[BACK]Return to speed.c CVS log [TXT][DIR] Up to [local] / src / usr.bin / openssl

File: [local] / src / usr.bin / openssl / speed.c (download)

Revision 1.33, Sat May 20 12:03:02 2023 UTC (12 months, 3 weeks ago) by tb
Branch: MAIN
Changes since 1.32: +27 -5 lines

openssl speed: add an '-unaligned n' option

All hashes and ciphers covered by speed should be able to handle unaligned
input and output. The buffers used in openssl speed are well aligned since
they are large, so will never exercise the more problematic unaligned case.

I wished something like this was available on various occasions. It would
have been useful to point more easily at OpenSSL's broken T4 assembly.
Yesterday there were two independent reasons for wanting it, so I sat down
and did it. It's trivial: make the allocations a bit larger and use buffers
starting at an offset inside these allocations. Despite the trivality, I
managed to have a stupid bug. Thanks miod.

discussed with jsing
ok miod

/* $OpenBSD: speed.c,v 1.33 2023/05/20 12:03:02 tb Exp $ */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
 *
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to.  The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 *
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *    "This product includes cryptographic software written by
 *     Eric Young (eay@cryptsoft.com)"
 *    The word 'cryptographic' can be left out if the rouines from the library
 *    being used are not cryptographic related :-).
 * 4. If you include any Windows specific code (or a derivative thereof) from
 *    the apps directory (application code) you must include an acknowledgement:
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 *
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * The licence and distribution terms for any publically available version or
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.]
 */
/* ====================================================================
 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
 *
 * Portions of the attached software ("Contribution") are developed by
 * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
 *
 * The Contribution is licensed pursuant to the OpenSSL open source
 * license provided above.
 *
 * The ECDH and ECDSA speed test software is originally written by
 * Sumit Gupta of Sun Microsystems Laboratories.
 *
 */

/* most of this code has been pilfered from my libdes speed.c program */

#ifndef OPENSSL_NO_SPEED

#define SECONDS		3
#define RSA_SECONDS	10
#define DSA_SECONDS	10
#define ECDSA_SECONDS   10
#define ECDH_SECONDS    10

#define MAX_UNALIGN	16

#include <math.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#include <string.h>
#include <unistd.h>

#include "apps.h"

#include <openssl/bn.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/modes.h>
#include <openssl/objects.h>
#include <openssl/x509.h>

#ifndef OPENSSL_NO_AES
#include <openssl/aes.h>
#endif
#ifndef OPENSSL_NO_BF
#include <openssl/blowfish.h>
#endif
#ifndef OPENSSL_NO_CAST
#include <openssl/cast.h>
#endif
#ifndef OPENSSL_NO_CAMELLIA
#include <openssl/camellia.h>
#endif
#ifndef OPENSSL_NO_DES
#include <openssl/des.h>
#endif
#include <openssl/dsa.h>
#include <openssl/ecdh.h>
#include <openssl/ecdsa.h>
#ifndef OPENSSL_NO_HMAC
#include <openssl/hmac.h>
#endif
#ifndef OPENSSL_NO_IDEA
#include <openssl/idea.h>
#endif
#ifndef OPENSSL_NO_MD4
#include <openssl/md4.h>
#endif
#ifndef OPENSSL_NO_MD5
#include <openssl/md5.h>
#endif
#ifndef OPENSSL_NO_RC2
#include <openssl/rc2.h>
#endif
#ifndef OPENSSL_NO_RC4
#include <openssl/rc4.h>
#endif
#include <openssl/rsa.h>
#ifndef OPENSSL_NO_RIPEMD
#include <openssl/ripemd.h>
#endif
#ifndef OPENSSL_NO_SHA
#include <openssl/sha.h>
#endif
#ifndef OPENSSL_NO_WHIRLPOOL
#include <openssl/whrlpool.h>
#endif

#include "./testdsa.h"
#include "./testrsa.h"

#define BUFSIZE	(1024*8+64)
int run = 0;

static int mr = 0;
static int usertime = 1;

static double Time_F(int s);
static void print_message(const char *s, long num, int length);
static void
pkey_print_message(const char *str, const char *str2,
    long num, int bits, int sec);
static void print_result(int alg, int run_no, int count, double time_used);
static int do_multi(int multi);

#define ALGOR_NUM	32
#define SIZE_NUM	5
#define RSA_NUM		4
#define DSA_NUM		3

#define EC_NUM       6
#define MAX_ECDH_SIZE 256

static const char *names[ALGOR_NUM] = {
	"md2", "md4", "md5", "hmac(md5)", "sha1", "rmd160",
	"rc4", "des cbc", "des ede3", "idea cbc", "seed cbc",
	"rc2 cbc", "rc5-32/12 cbc", "blowfish cbc", "cast cbc",
	"aes-128 cbc", "aes-192 cbc", "aes-256 cbc",
	"camellia-128 cbc", "camellia-192 cbc", "camellia-256 cbc",
	"evp", "sha256", "sha512", "whirlpool",
	"aes-128 ige", "aes-192 ige", "aes-256 ige", "ghash",
	"aes-128 gcm", "aes-256 gcm", "chacha20 poly1305",
};
static double results[ALGOR_NUM][SIZE_NUM];
static int lengths[SIZE_NUM] = {16, 64, 256, 1024, 8 * 1024};
static double rsa_results[RSA_NUM][2];
static double dsa_results[DSA_NUM][2];
static double ecdsa_results[EC_NUM][2];
static double ecdh_results[EC_NUM][1];

static void sig_done(int sig);

static void
sig_done(int sig)
{
	signal(SIGALRM, sig_done);
	run = 0;
}

#define START	TM_RESET
#define STOP	TM_GET


static double
Time_F(int s)
{
	if (usertime)
		return app_timer_user(s);
	else
		return app_timer_real(s);
}


static const int KDF1_SHA1_len = 20;
static void *
KDF1_SHA1(const void *in, size_t inlen, void *out, size_t * outlen)
{
#ifndef OPENSSL_NO_SHA
	if (*outlen < SHA_DIGEST_LENGTH)
		return NULL;
	else
		*outlen = SHA_DIGEST_LENGTH;
	return SHA1(in, inlen, out);
#else
	return NULL;
#endif				/* OPENSSL_NO_SHA */
}

int
speed_main(int argc, char **argv)
{
	unsigned char *real_buf = NULL, *real_buf2 = NULL;
	unsigned char *buf = NULL, *buf2 = NULL;
	size_t unaligned = 0;
	int mret = 1;
	long count = 0, save_count = 0;
	int i, j, k;
	long rsa_count;
	unsigned rsa_num;
	unsigned char md[EVP_MAX_MD_SIZE];
#ifndef OPENSSL_NO_MD4
	unsigned char md4[MD4_DIGEST_LENGTH];
#endif
#ifndef OPENSSL_NO_MD5
	unsigned char md5[MD5_DIGEST_LENGTH];
	unsigned char hmac[MD5_DIGEST_LENGTH];
#endif
#ifndef OPENSSL_NO_SHA
	unsigned char sha[SHA_DIGEST_LENGTH];
#ifndef OPENSSL_NO_SHA256
	unsigned char sha256[SHA256_DIGEST_LENGTH];
#endif
#ifndef OPENSSL_NO_SHA512
	unsigned char sha512[SHA512_DIGEST_LENGTH];
#endif
#endif
#ifndef OPENSSL_NO_WHIRLPOOL
	unsigned char whirlpool[WHIRLPOOL_DIGEST_LENGTH];
#endif
#ifndef OPENSSL_NO_RIPEMD
	unsigned char rmd160[RIPEMD160_DIGEST_LENGTH];
#endif
#ifndef OPENSSL_NO_RC4
	RC4_KEY rc4_ks;
#endif
#ifndef OPENSSL_NO_RC2
	RC2_KEY rc2_ks;
#endif
#ifndef OPENSSL_NO_IDEA
	IDEA_KEY_SCHEDULE idea_ks;
#endif
#ifndef OPENSSL_NO_BF
	BF_KEY bf_ks;
#endif
#ifndef OPENSSL_NO_CAST
	CAST_KEY cast_ks;
#endif
	static const unsigned char key16[16] =
	{0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
	0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12};
#ifndef OPENSSL_NO_AES
	static const unsigned char key24[24] =
	{0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
		0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
	0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34};
	static const unsigned char key32[32] =
	{0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
		0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
		0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34,
	0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56};
#endif
#ifndef OPENSSL_NO_CAMELLIA
	static const unsigned char ckey24[24] =
	{0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
		0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
	0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34};
	static const unsigned char ckey32[32] =
	{0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
		0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
		0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34,
	0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56};
#endif
#ifndef OPENSSL_NO_AES
#define MAX_BLOCK_SIZE 128
#else
#define MAX_BLOCK_SIZE 64
#endif
	unsigned char DES_iv[8];
	unsigned char iv[2 * MAX_BLOCK_SIZE / 8];
#ifndef OPENSSL_NO_DES
	static DES_cblock key = {0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0};
	static DES_cblock key2 = {0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12};
	static DES_cblock key3 = {0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34};
	DES_key_schedule sch;
	DES_key_schedule sch2;
	DES_key_schedule sch3;
#endif
#ifndef OPENSSL_NO_AES
	AES_KEY aes_ks1, aes_ks2, aes_ks3;
#endif
#ifndef OPENSSL_NO_CAMELLIA
	CAMELLIA_KEY camellia_ks1, camellia_ks2, camellia_ks3;
#endif
#define	D_MD2		0
#define	D_MD4		1
#define	D_MD5		2
#define	D_HMAC		3
#define	D_SHA1		4
#define D_RMD160	5
#define	D_RC4		6
#define	D_CBC_DES	7
#define	D_EDE3_DES	8
#define	D_CBC_IDEA	9
#define	D_CBC_SEED	10
#define	D_CBC_RC2	11
#define	D_CBC_RC5	12
#define	D_CBC_BF	13
#define	D_CBC_CAST	14
#define D_CBC_128_AES	15
#define D_CBC_192_AES	16
#define D_CBC_256_AES	17
#define D_CBC_128_CML   18
#define D_CBC_192_CML   19
#define D_CBC_256_CML   20
#define D_EVP		21
#define D_SHA256	22
#define D_SHA512	23
#define D_WHIRLPOOL	24
#define D_IGE_128_AES   25
#define D_IGE_192_AES   26
#define D_IGE_256_AES   27
#define D_GHASH		28
#define D_AES_128_GCM	29
#define D_AES_256_GCM	30
#define D_CHACHA20_POLY1305	31
	double d = 0.0;
	long c[ALGOR_NUM][SIZE_NUM];
#define	R_DSA_512	0
#define	R_DSA_1024	1
#define	R_DSA_2048	2
#define	R_RSA_512	0
#define	R_RSA_1024	1
#define	R_RSA_2048	2
#define	R_RSA_4096	3

#define R_EC_P160    0
#define R_EC_P192    1
#define R_EC_P224    2
#define R_EC_P256    3
#define R_EC_P384    4
#define R_EC_P521    5

	RSA *rsa_key[RSA_NUM];
	long rsa_c[RSA_NUM][2];
	static unsigned int rsa_bits[RSA_NUM] = {512, 1024, 2048, 4096};
	static unsigned char *rsa_data[RSA_NUM] =
	{test512, test1024, test2048, test4096};
	static int rsa_data_length[RSA_NUM] = {
		sizeof(test512), sizeof(test1024),
	sizeof(test2048), sizeof(test4096)};
	DSA *dsa_key[DSA_NUM];
	long dsa_c[DSA_NUM][2];
	static unsigned int dsa_bits[DSA_NUM] = {512, 1024, 2048};
#ifndef OPENSSL_NO_EC
	/*
	 * We only test over the following curves as they are representative,
	 * To add tests over more curves, simply add the curve NID and curve
	 * name to the following arrays and increase the EC_NUM value
	 * accordingly.
	 */
	static unsigned int test_curves[EC_NUM] = {
		NID_secp160r1,
		NID_X9_62_prime192v1,
		NID_secp224r1,
		NID_X9_62_prime256v1,
		NID_secp384r1,
		NID_secp521r1,
	};
	static const char *test_curves_names[EC_NUM] = {
		"secp160r1",
		"nistp192",
		"nistp224",
		"nistp256",
		"nistp384",
		"nistp521",
	};
	static int test_curves_bits[EC_NUM] = {
		160, 192, 224, 256, 384, 521,
	};

#endif

	unsigned char ecdsasig[256];
	unsigned int ecdsasiglen;
	EC_KEY *ecdsa[EC_NUM];
	long ecdsa_c[EC_NUM][2];

	EC_KEY *ecdh_a[EC_NUM], *ecdh_b[EC_NUM];
	unsigned char secret_a[MAX_ECDH_SIZE], secret_b[MAX_ECDH_SIZE];
	int secret_size_a, secret_size_b;
	int ecdh_checks = 0;
	int secret_idx = 0;
	long ecdh_c[EC_NUM][2];

	int rsa_doit[RSA_NUM];
	int dsa_doit[DSA_NUM];
	int ecdsa_doit[EC_NUM];
	int ecdh_doit[EC_NUM];
	int doit[ALGOR_NUM];
	int pr_header = 0;
	const EVP_CIPHER *evp_cipher = NULL;
	const EVP_MD *evp_md = NULL;
	int decrypt = 0;
	int multi = 0;
	const char *errstr = NULL;

	if (pledge("stdio proc", NULL) == -1) {
		perror("pledge");
		exit(1);
	}

	usertime = -1;

	memset(results, 0, sizeof(results));
	memset(dsa_key, 0, sizeof(dsa_key));
	for (i = 0; i < EC_NUM; i++)
		ecdsa[i] = NULL;
	for (i = 0; i < EC_NUM; i++) {
		ecdh_a[i] = NULL;
		ecdh_b[i] = NULL;
	}

	memset(rsa_key, 0, sizeof(rsa_key));
	for (i = 0; i < RSA_NUM; i++)
		rsa_key[i] = NULL;

	if ((buf = real_buf = malloc(BUFSIZE + MAX_UNALIGN)) == NULL) {
		BIO_printf(bio_err, "out of memory\n");
		goto end;
	}
	if ((buf2 = real_buf2 = malloc(BUFSIZE + MAX_UNALIGN)) == NULL) {
		BIO_printf(bio_err, "out of memory\n");
		goto end;
	}
	memset(c, 0, sizeof(c));
	memset(DES_iv, 0, sizeof(DES_iv));
	memset(iv, 0, sizeof(iv));

	for (i = 0; i < ALGOR_NUM; i++)
		doit[i] = 0;
	for (i = 0; i < RSA_NUM; i++)
		rsa_doit[i] = 0;
	for (i = 0; i < DSA_NUM; i++)
		dsa_doit[i] = 0;
	for (i = 0; i < EC_NUM; i++)
		ecdsa_doit[i] = 0;
	for (i = 0; i < EC_NUM; i++)
		ecdh_doit[i] = 0;


	j = 0;
	argc--;
	argv++;
	while (argc) {
		if (argc > 0 && strcmp(*argv, "-elapsed") == 0) {
			usertime = 0;
			j--;	/* Otherwise, -elapsed gets confused with an
				 * algorithm. */
		} else if (argc > 0 && strcmp(*argv, "-evp") == 0) {
			argc--;
			argv++;
			if (argc == 0) {
				BIO_printf(bio_err, "no EVP given\n");
				goto end;
			}
			evp_cipher = EVP_get_cipherbyname(*argv);
			if (!evp_cipher) {
				evp_md = EVP_get_digestbyname(*argv);
			}
			if (!evp_cipher && !evp_md) {
				BIO_printf(bio_err, "%s is an unknown cipher or digest\n", *argv);
				goto end;
			}
			doit[D_EVP] = 1;
		} else if (argc > 0 && strcmp(*argv, "-decrypt") == 0) {
			decrypt = 1;
			j--;	/* Otherwise, -decrypt gets confused with an
				 * algorithm. */
		} else if (argc > 0 && strcmp(*argv, "-multi") == 0) {
			argc--;
			argv++;
			if (argc == 0) {
				BIO_printf(bio_err, "no multi count given\n");
				goto end;
			}
			multi = strtonum(argv[0], 1, INT_MAX, &errstr);
			if (errstr) {
				BIO_printf(bio_err, "bad multi count: %s", errstr);
				goto end;
			}
			j--;	/* Otherwise, -multi gets confused with an
				 * algorithm. */
		} else if (argc > 0 && strcmp(*argv, "-unaligned") == 0) {
			argc--;
			argv++;
			if (argc == 0) {
				BIO_printf(bio_err, "no alignment offset given\n");
				goto end;
			}
			unaligned = strtonum(argv[0], 0, MAX_UNALIGN, &errstr);
			if (errstr) {
				BIO_printf(bio_err, "bad alignment offset: %s",
				    errstr);
				goto end;
			}
			buf = real_buf + unaligned;
			buf2 = real_buf2 + unaligned;
			j--;	/* Otherwise, -unaligned gets confused with an
				 * algorithm. */
		} else if (argc > 0 && strcmp(*argv, "-mr") == 0) {
			mr = 1;
			j--;	/* Otherwise, -mr gets confused with an
				 * algorithm. */
		} else
#ifndef OPENSSL_NO_MD4
		if (strcmp(*argv, "md4") == 0)
			doit[D_MD4] = 1;
		else
#endif
#ifndef OPENSSL_NO_MD5
		if (strcmp(*argv, "md5") == 0)
			doit[D_MD5] = 1;
		else
#endif
#ifndef OPENSSL_NO_MD5
		if (strcmp(*argv, "hmac") == 0)
			doit[D_HMAC] = 1;
		else
#endif
#ifndef OPENSSL_NO_SHA
		if (strcmp(*argv, "sha1") == 0)
			doit[D_SHA1] = 1;
		else if (strcmp(*argv, "sha") == 0)
			doit[D_SHA1] = 1,
			    doit[D_SHA256] = 1,
			    doit[D_SHA512] = 1;
		else
#ifndef OPENSSL_NO_SHA256
		if (strcmp(*argv, "sha256") == 0)
			doit[D_SHA256] = 1;
		else
#endif
#ifndef OPENSSL_NO_SHA512
		if (strcmp(*argv, "sha512") == 0)
			doit[D_SHA512] = 1;
		else
#endif
#endif
#ifndef OPENSSL_NO_WHIRLPOOL
		if (strcmp(*argv, "whirlpool") == 0)
			doit[D_WHIRLPOOL] = 1;
		else
#endif
#ifndef OPENSSL_NO_RIPEMD
		if (strcmp(*argv, "ripemd") == 0)
			doit[D_RMD160] = 1;
		else if (strcmp(*argv, "rmd160") == 0)
			doit[D_RMD160] = 1;
		else if (strcmp(*argv, "ripemd160") == 0)
			doit[D_RMD160] = 1;
		else
#endif
#ifndef OPENSSL_NO_RC4
		if (strcmp(*argv, "rc4") == 0)
			doit[D_RC4] = 1;
		else
#endif
#ifndef OPENSSL_NO_DES
		if (strcmp(*argv, "des-cbc") == 0)
			doit[D_CBC_DES] = 1;
		else if (strcmp(*argv, "des-ede3") == 0)
			doit[D_EDE3_DES] = 1;
		else
#endif
#ifndef OPENSSL_NO_AES
		if (strcmp(*argv, "aes-128-cbc") == 0)
			doit[D_CBC_128_AES] = 1;
		else if (strcmp(*argv, "aes-192-cbc") == 0)
			doit[D_CBC_192_AES] = 1;
		else if (strcmp(*argv, "aes-256-cbc") == 0)
			doit[D_CBC_256_AES] = 1;
		else if (strcmp(*argv, "aes-128-ige") == 0)
			doit[D_IGE_128_AES] = 1;
		else if (strcmp(*argv, "aes-192-ige") == 0)
			doit[D_IGE_192_AES] = 1;
		else if (strcmp(*argv, "aes-256-ige") == 0)
			doit[D_IGE_256_AES] = 1;
		else
#endif
#ifndef OPENSSL_NO_CAMELLIA
		if (strcmp(*argv, "camellia-128-cbc") == 0)
			doit[D_CBC_128_CML] = 1;
		else if (strcmp(*argv, "camellia-192-cbc") == 0)
			doit[D_CBC_192_CML] = 1;
		else if (strcmp(*argv, "camellia-256-cbc") == 0)
			doit[D_CBC_256_CML] = 1;
		else
#endif
#ifndef RSA_NULL
		if (strcmp(*argv, "openssl") == 0) {
			RSA_set_default_method(RSA_PKCS1_SSLeay());
			j--;
		} else
#endif
		if (strcmp(*argv, "dsa512") == 0)
			dsa_doit[R_DSA_512] = 2;
		else if (strcmp(*argv, "dsa1024") == 0)
			dsa_doit[R_DSA_1024] = 2;
		else if (strcmp(*argv, "dsa2048") == 0)
			dsa_doit[R_DSA_2048] = 2;
		else if (strcmp(*argv, "rsa512") == 0)
			rsa_doit[R_RSA_512] = 2;
		else if (strcmp(*argv, "rsa1024") == 0)
			rsa_doit[R_RSA_1024] = 2;
		else if (strcmp(*argv, "rsa2048") == 0)
			rsa_doit[R_RSA_2048] = 2;
		else if (strcmp(*argv, "rsa4096") == 0)
			rsa_doit[R_RSA_4096] = 2;
		else
#ifndef OPENSSL_NO_RC2
		if (strcmp(*argv, "rc2-cbc") == 0)
			doit[D_CBC_RC2] = 1;
		else if (strcmp(*argv, "rc2") == 0)
			doit[D_CBC_RC2] = 1;
		else
#endif
#ifndef OPENSSL_NO_IDEA
		if (strcmp(*argv, "idea-cbc") == 0)
			doit[D_CBC_IDEA] = 1;
		else if (strcmp(*argv, "idea") == 0)
			doit[D_CBC_IDEA] = 1;
		else
#endif
#ifndef OPENSSL_NO_BF
		if (strcmp(*argv, "bf-cbc") == 0)
			doit[D_CBC_BF] = 1;
		else if (strcmp(*argv, "blowfish") == 0)
			doit[D_CBC_BF] = 1;
		else if (strcmp(*argv, "bf") == 0)
			doit[D_CBC_BF] = 1;
		else
#endif
#ifndef OPENSSL_NO_CAST
		if (strcmp(*argv, "cast-cbc") == 0)
			doit[D_CBC_CAST] = 1;
		else if (strcmp(*argv, "cast") == 0)
			doit[D_CBC_CAST] = 1;
		else if (strcmp(*argv, "cast5") == 0)
			doit[D_CBC_CAST] = 1;
		else
#endif
#ifndef OPENSSL_NO_DES
		if (strcmp(*argv, "des") == 0) {
			doit[D_CBC_DES] = 1;
			doit[D_EDE3_DES] = 1;
		} else
#endif
#ifndef OPENSSL_NO_AES
		if (strcmp(*argv, "aes") == 0) {
			doit[D_CBC_128_AES] = 1;
			doit[D_CBC_192_AES] = 1;
			doit[D_CBC_256_AES] = 1;
		} else if (strcmp(*argv, "ghash") == 0)
			doit[D_GHASH] = 1;
		else if (strcmp(*argv,"aes-128-gcm") == 0)
			doit[D_AES_128_GCM]=1;
		else if (strcmp(*argv,"aes-256-gcm") == 0)
			doit[D_AES_256_GCM]=1;
		else
#endif
#ifndef OPENSSL_NO_CAMELLIA
		if (strcmp(*argv, "camellia") == 0) {
			doit[D_CBC_128_CML] = 1;
			doit[D_CBC_192_CML] = 1;
			doit[D_CBC_256_CML] = 1;
		} else
#endif
#if !defined(OPENSSL_NO_CHACHA) && !defined(OPENSSL_NO_POLY1305)
		if (strcmp(*argv,"chacha20-poly1305") == 0)
			doit[D_CHACHA20_POLY1305]=1;
		else
#endif
		if (strcmp(*argv, "rsa") == 0) {
			rsa_doit[R_RSA_512] = 1;
			rsa_doit[R_RSA_1024] = 1;
			rsa_doit[R_RSA_2048] = 1;
			rsa_doit[R_RSA_4096] = 1;
		} else
		if (strcmp(*argv, "dsa") == 0) {
			dsa_doit[R_DSA_512] = 1;
			dsa_doit[R_DSA_1024] = 1;
			dsa_doit[R_DSA_2048] = 1;
		} else
		if (strcmp(*argv, "ecdsap160") == 0)
			ecdsa_doit[R_EC_P160] = 2;
		else if (strcmp(*argv, "ecdsap192") == 0)
			ecdsa_doit[R_EC_P192] = 2;
		else if (strcmp(*argv, "ecdsap224") == 0)
			ecdsa_doit[R_EC_P224] = 2;
		else if (strcmp(*argv, "ecdsap256") == 0)
			ecdsa_doit[R_EC_P256] = 2;
		else if (strcmp(*argv, "ecdsap384") == 0)
			ecdsa_doit[R_EC_P384] = 2;
		else if (strcmp(*argv, "ecdsap521") == 0)
			ecdsa_doit[R_EC_P521] = 2;
		else if (strcmp(*argv, "ecdsa") == 0) {
			for (i = 0; i < EC_NUM; i++)
				ecdsa_doit[i] = 1;
		} else
		if (strcmp(*argv, "ecdhp160") == 0)
			ecdh_doit[R_EC_P160] = 2;
		else if (strcmp(*argv, "ecdhp192") == 0)
			ecdh_doit[R_EC_P192] = 2;
		else if (strcmp(*argv, "ecdhp224") == 0)
			ecdh_doit[R_EC_P224] = 2;
		else if (strcmp(*argv, "ecdhp256") == 0)
			ecdh_doit[R_EC_P256] = 2;
		else if (strcmp(*argv, "ecdhp384") == 0)
			ecdh_doit[R_EC_P384] = 2;
		else if (strcmp(*argv, "ecdhp521") == 0)
			ecdh_doit[R_EC_P521] = 2;
		else if (strcmp(*argv, "ecdh") == 0) {
			for (i = 0; i < EC_NUM; i++)
				ecdh_doit[i] = 1;
		} else
		{
			BIO_printf(bio_err, "Error: bad option or value\n");
			BIO_printf(bio_err, "\n");
			BIO_printf(bio_err, "Available values:\n");
#ifndef OPENSSL_NO_MD4
			BIO_printf(bio_err, "md4      ");
#endif
#ifndef OPENSSL_NO_MD5
			BIO_printf(bio_err, "md5      ");
#ifndef OPENSSL_NO_HMAC
			BIO_printf(bio_err, "hmac     ");
#endif
#endif
#ifndef OPENSSL_NO_SHA1
			BIO_printf(bio_err, "sha1     ");
#endif
#ifndef OPENSSL_NO_SHA256
			BIO_printf(bio_err, "sha256   ");
#endif
#ifndef OPENSSL_NO_SHA512
			BIO_printf(bio_err, "sha512   ");
#endif
#ifndef OPENSSL_NO_WHIRLPOOL
			BIO_printf(bio_err, "whirlpool");
#endif
#ifndef OPENSSL_NO_RIPEMD160
			BIO_printf(bio_err, "rmd160");
#endif
#if !defined(OPENSSL_NO_MD2) || \
    !defined(OPENSSL_NO_MD4) || !defined(OPENSSL_NO_MD5) || \
    !defined(OPENSSL_NO_SHA1) || !defined(OPENSSL_NO_RIPEMD160) || \
    !defined(OPENSSL_NO_WHIRLPOOL)
			BIO_printf(bio_err, "\n");
#endif

#ifndef OPENSSL_NO_IDEA
			BIO_printf(bio_err, "idea-cbc ");
#endif
#ifndef OPENSSL_NO_RC2
			BIO_printf(bio_err, "rc2-cbc  ");
#endif
#ifndef OPENSSL_NO_BF
			BIO_printf(bio_err, "bf-cbc   ");
#endif
#ifndef OPENSSL_NO_DES
			BIO_printf(bio_err, "des-cbc  des-ede3\n");
#endif
#ifndef OPENSSL_NO_AES
			BIO_printf(bio_err, "aes-128-cbc aes-192-cbc aes-256-cbc ");
			BIO_printf(bio_err, "aes-128-ige aes-192-ige aes-256-ige\n");
			BIO_printf(bio_err, "aes-128-gcm aes-256-gcm ");
#endif
#ifndef OPENSSL_NO_CAMELLIA
			BIO_printf(bio_err, "\n");
			BIO_printf(bio_err, "camellia-128-cbc camellia-192-cbc camellia-256-cbc ");
#endif
#ifndef OPENSSL_NO_RC4
			BIO_printf(bio_err, "rc4");
#endif
#if !defined(OPENSSL_NO_CHACHA) && !defined(OPENSSL_NO_POLY1305)
			BIO_printf(bio_err," chacha20-poly1305");
#endif
			BIO_printf(bio_err, "\n");

			BIO_printf(bio_err, "rsa512   rsa1024  rsa2048  rsa4096\n");

			BIO_printf(bio_err, "dsa512   dsa1024  dsa2048\n");
			BIO_printf(bio_err, "ecdsap160 ecdsap192 ecdsap224 ecdsap256 ecdsap384 ecdsap521\n");
			BIO_printf(bio_err, "ecdhp160  ecdhp192  ecdhp224  ecdhp256  ecdhp384  ecdhp521\n");

#ifndef OPENSSL_NO_IDEA
			BIO_printf(bio_err, "idea     ");
#endif
#ifndef OPENSSL_NO_RC2
			BIO_printf(bio_err, "rc2      ");
#endif
#ifndef OPENSSL_NO_DES
			BIO_printf(bio_err, "des      ");
#endif
#ifndef OPENSSL_NO_AES
			BIO_printf(bio_err, "aes      ");
#endif
#ifndef OPENSSL_NO_CAMELLIA
			BIO_printf(bio_err, "camellia ");
#endif
			BIO_printf(bio_err, "rsa      ");
#ifndef OPENSSL_NO_BF
			BIO_printf(bio_err, "blowfish");
#endif
#if !defined(OPENSSL_NO_IDEA) || !defined(OPENSSL_NO_SEED) || \
    !defined(OPENSSL_NO_RC2) || !defined(OPENSSL_NO_DES) || \
    !defined(OPENSSL_NO_RSA) || !defined(OPENSSL_NO_BF) || \
    !defined(OPENSSL_NO_AES) || !defined(OPENSSL_NO_CAMELLIA)
			BIO_printf(bio_err, "\n");
#endif

			BIO_printf(bio_err, "\n");
			BIO_printf(bio_err, "Available options:\n");
			BIO_printf(bio_err, "-elapsed        measure time in real time instead of CPU user time.\n");
			BIO_printf(bio_err, "-evp e          use EVP e.\n");
			BIO_printf(bio_err, "-decrypt        time decryption instead of encryption (only EVP).\n");
			BIO_printf(bio_err, "-mr             produce machine readable output.\n");
			BIO_printf(bio_err, "-multi n        run n benchmarks in parallel.\n");
			BIO_printf(bio_err, "-unaligned n    use buffers with offset n from proper alignment.\n");
			goto end;
		}
		argc--;
		argv++;
		j++;
	}

	if (multi && do_multi(multi))
		goto show_res;

	if (j == 0) {
		for (i = 0; i < ALGOR_NUM; i++) {
			if (i != D_EVP)
				doit[i] = 1;
		}
		for (i = 0; i < RSA_NUM; i++)
			rsa_doit[i] = 1;
		for (i = 0; i < DSA_NUM; i++)
			dsa_doit[i] = 1;
		for (i = 0; i < EC_NUM; i++)
			ecdsa_doit[i] = 1;
		for (i = 0; i < EC_NUM; i++)
			ecdh_doit[i] = 1;
	}
	for (i = 0; i < ALGOR_NUM; i++)
		if (doit[i])
			pr_header++;

	if (usertime == 0 && !mr)
		BIO_printf(bio_err, "You have chosen to measure elapsed time instead of user CPU time.\n");

	for (i = 0; i < RSA_NUM; i++) {
		const unsigned char *p;

		p = rsa_data[i];
		rsa_key[i] = d2i_RSAPrivateKey(NULL, &p, rsa_data_length[i]);
		if (rsa_key[i] == NULL) {
			BIO_printf(bio_err, "internal error loading RSA key number %d\n", i);
			goto end;
		}
	}

	dsa_key[0] = get_dsa512();
	dsa_key[1] = get_dsa1024();
	dsa_key[2] = get_dsa2048();

#ifndef OPENSSL_NO_DES
	DES_set_key_unchecked(&key, &sch);
	DES_set_key_unchecked(&key2, &sch2);
	DES_set_key_unchecked(&key3, &sch3);
#endif
#ifndef OPENSSL_NO_AES
	AES_set_encrypt_key(key16, 128, &aes_ks1);
	AES_set_encrypt_key(key24, 192, &aes_ks2);
	AES_set_encrypt_key(key32, 256, &aes_ks3);
#endif
#ifndef OPENSSL_NO_CAMELLIA
	Camellia_set_key(key16, 128, &camellia_ks1);
	Camellia_set_key(ckey24, 192, &camellia_ks2);
	Camellia_set_key(ckey32, 256, &camellia_ks3);
#endif
#ifndef OPENSSL_NO_IDEA
	idea_set_encrypt_key(key16, &idea_ks);
#endif
#ifndef OPENSSL_NO_RC4
	RC4_set_key(&rc4_ks, 16, key16);
#endif
#ifndef OPENSSL_NO_RC2
	RC2_set_key(&rc2_ks, 16, key16, 128);
#endif
#ifndef OPENSSL_NO_BF
	BF_set_key(&bf_ks, 16, key16);
#endif
#ifndef OPENSSL_NO_CAST
	CAST_set_key(&cast_ks, 16, key16);
#endif
	memset(rsa_c, 0, sizeof(rsa_c));
#define COND(c)	(run && count<0x7fffffff)
#define COUNT(d) (count)
	signal(SIGALRM, sig_done);

#ifndef OPENSSL_NO_MD4
	if (doit[D_MD4]) {
		for (j = 0; j < SIZE_NUM; j++) {
			print_message(names[D_MD4], c[D_MD4][j], lengths[j]);
			Time_F(START);
			for (count = 0, run = 1; COND(c[D_MD4][j]); count++)
				EVP_Digest(&(buf[0]), (unsigned long) lengths[j], &(md4[0]), NULL, EVP_md4(), NULL);
			d = Time_F(STOP);
			print_result(D_MD4, j, count, d);
		}
	}
#endif

#ifndef OPENSSL_NO_MD5
	if (doit[D_MD5]) {
		for (j = 0; j < SIZE_NUM; j++) {
			print_message(names[D_MD5], c[D_MD5][j], lengths[j]);
			Time_F(START);
			for (count = 0, run = 1; COND(c[D_MD5][j]); count++)
				EVP_Digest(&(buf[0]), (unsigned long) lengths[j], &(md5[0]), NULL, EVP_get_digestbyname("md5"), NULL);
			d = Time_F(STOP);
			print_result(D_MD5, j, count, d);
		}
	}
#endif

#if !defined(OPENSSL_NO_MD5) && !defined(OPENSSL_NO_HMAC)
	if (doit[D_HMAC]) {
		HMAC_CTX *hctx;

		if ((hctx = HMAC_CTX_new()) == NULL) {
			BIO_printf(bio_err, "Failed to allocate HMAC context.\n");
			goto end;
		}

		HMAC_Init_ex(hctx, (unsigned char *) "This is a key...",
		    16, EVP_md5(), NULL);

		for (j = 0; j < SIZE_NUM; j++) {
			print_message(names[D_HMAC], c[D_HMAC][j], lengths[j]);
			Time_F(START);
			for (count = 0, run = 1; COND(c[D_HMAC][j]); count++) {
				if (!HMAC_Init_ex(hctx, NULL, 0, NULL, NULL)) {
					HMAC_CTX_free(hctx);
					goto end;
				}
				if (!HMAC_Update(hctx, buf, lengths[j])) {
					HMAC_CTX_free(hctx);
					goto end;
				}
				if (!HMAC_Final(hctx, &(hmac[0]), NULL)) {
					HMAC_CTX_free(hctx);
					goto end;
				}
			}
			d = Time_F(STOP);
			print_result(D_HMAC, j, count, d);
		}
		HMAC_CTX_free(hctx);
	}
#endif
#ifndef OPENSSL_NO_SHA
	if (doit[D_SHA1]) {
		for (j = 0; j < SIZE_NUM; j++) {
			print_message(names[D_SHA1], c[D_SHA1][j], lengths[j]);
			Time_F(START);
			for (count = 0, run = 1; COND(c[D_SHA1][j]); count++)
				EVP_Digest(buf, (unsigned long) lengths[j], &(sha[0]), NULL, EVP_sha1(), NULL);
			d = Time_F(STOP);
			print_result(D_SHA1, j, count, d);
		}
	}
#ifndef OPENSSL_NO_SHA256
	if (doit[D_SHA256]) {
		for (j = 0; j < SIZE_NUM; j++) {
			print_message(names[D_SHA256], c[D_SHA256][j], lengths[j]);
			Time_F(START);
			for (count = 0, run = 1; COND(c[D_SHA256][j]); count++)
				SHA256(buf, lengths[j], sha256);
			d = Time_F(STOP);
			print_result(D_SHA256, j, count, d);
		}
	}
#endif

#ifndef OPENSSL_NO_SHA512
	if (doit[D_SHA512]) {
		for (j = 0; j < SIZE_NUM; j++) {
			print_message(names[D_SHA512], c[D_SHA512][j], lengths[j]);
			Time_F(START);
			for (count = 0, run = 1; COND(c[D_SHA512][j]); count++)
				SHA512(buf, lengths[j], sha512);
			d = Time_F(STOP);
			print_result(D_SHA512, j, count, d);
		}
	}
#endif
#endif

#ifndef OPENSSL_NO_WHIRLPOOL
	if (doit[D_WHIRLPOOL]) {
		for (j = 0; j < SIZE_NUM; j++) {
			print_message(names[D_WHIRLPOOL], c[D_WHIRLPOOL][j], lengths[j]);
			Time_F(START);
			for (count = 0, run = 1; COND(c[D_WHIRLPOOL][j]); count++)
				WHIRLPOOL(buf, lengths[j], whirlpool);
			d = Time_F(STOP);
			print_result(D_WHIRLPOOL, j, count, d);
		}
	}
#endif

#ifndef OPENSSL_NO_RIPEMD
	if (doit[D_RMD160]) {
		for (j = 0; j < SIZE_NUM; j++) {
			print_message(names[D_RMD160], c[D_RMD160][j], lengths[j]);
			Time_F(START);
			for (count = 0, run = 1; COND(c[D_RMD160][j]); count++)
				EVP_Digest(buf, (unsigned long) lengths[j], &(rmd160[0]), NULL, EVP_ripemd160(), NULL);
			d = Time_F(STOP);
			print_result(D_RMD160, j, count, d);
		}
	}
#endif
#ifndef OPENSSL_NO_RC4
	if (doit[D_RC4]) {
		for (j = 0; j < SIZE_NUM; j++) {
			print_message(names[D_RC4], c[D_RC4][j], lengths[j]);
			Time_F(START);
			for (count = 0, run = 1; COND(c[D_RC4][j]); count++)
				RC4(&rc4_ks, (unsigned int) lengths[j],
				    buf, buf);
			d = Time_F(STOP);
			print_result(D_RC4, j, count, d);
		}
	}
#endif
#ifndef OPENSSL_NO_DES
	if (doit[D_CBC_DES]) {
		for (j = 0; j < SIZE_NUM; j++) {
			print_message(names[D_CBC_DES], c[D_CBC_DES][j], lengths[j]);
			Time_F(START);
			for (count = 0, run = 1; COND(c[D_CBC_DES][j]); count++)
				DES_ncbc_encrypt(buf, buf, lengths[j], &sch,
				    &DES_iv, DES_ENCRYPT);
			d = Time_F(STOP);
			print_result(D_CBC_DES, j, count, d);
		}
	}
	if (doit[D_EDE3_DES]) {
		for (j = 0; j < SIZE_NUM; j++) {
			print_message(names[D_EDE3_DES], c[D_EDE3_DES][j], lengths[j]);
			Time_F(START);
			for (count = 0, run = 1; COND(c[D_EDE3_DES][j]); count++)
				DES_ede3_cbc_encrypt(buf, buf, lengths[j],
				    &sch, &sch2, &sch3,
				    &DES_iv, DES_ENCRYPT);
			d = Time_F(STOP);
			print_result(D_EDE3_DES, j, count, d);
		}
	}
#endif
#ifndef OPENSSL_NO_AES
	if (doit[D_CBC_128_AES]) {
		for (j = 0; j < SIZE_NUM; j++) {
			print_message(names[D_CBC_128_AES], c[D_CBC_128_AES][j], lengths[j]);
			Time_F(START);
			for (count = 0, run = 1; COND(c[D_CBC_128_AES][j]); count++)
				AES_cbc_encrypt(buf, buf,
				    (unsigned long) lengths[j], &aes_ks1,
				    iv, AES_ENCRYPT);
			d = Time_F(STOP);
			print_result(D_CBC_128_AES, j, count, d);
		}
	}
	if (doit[D_CBC_192_AES]) {
		for (j = 0; j < SIZE_NUM; j++) {
			print_message(names[D_CBC_192_AES], c[D_CBC_192_AES][j], lengths[j]);
			Time_F(START);
			for (count = 0, run = 1; COND(c[D_CBC_192_AES][j]); count++)
				AES_cbc_encrypt(buf, buf,
				    (unsigned long) lengths[j], &aes_ks2,
				    iv, AES_ENCRYPT);
			d = Time_F(STOP);
			print_result(D_CBC_192_AES, j, count, d);
		}
	}
	if (doit[D_CBC_256_AES]) {
		for (j = 0; j < SIZE_NUM; j++) {
			print_message(names[D_CBC_256_AES], c[D_CBC_256_AES][j], lengths[j]);
			Time_F(START);
			for (count = 0, run = 1; COND(c[D_CBC_256_AES][j]); count++)
				AES_cbc_encrypt(buf, buf,
				    (unsigned long) lengths[j], &aes_ks3,
				    iv, AES_ENCRYPT);
			d = Time_F(STOP);
			print_result(D_CBC_256_AES, j, count, d);
		}
	}
	if (doit[D_IGE_128_AES]) {
		for (j = 0; j < SIZE_NUM; j++) {
			print_message(names[D_IGE_128_AES], c[D_IGE_128_AES][j], lengths[j]);
			Time_F(START);
			for (count = 0, run = 1; COND(c[D_IGE_128_AES][j]); count++)
				AES_ige_encrypt(buf, buf2,
				    (unsigned long) lengths[j], &aes_ks1,
				    iv, AES_ENCRYPT);
			d = Time_F(STOP);
			print_result(D_IGE_128_AES, j, count, d);
		}
	}
	if (doit[D_IGE_192_AES]) {
		for (j = 0; j < SIZE_NUM; j++) {
			print_message(names[D_IGE_192_AES], c[D_IGE_192_AES][j], lengths[j]);
			Time_F(START);
			for (count = 0, run = 1; COND(c[D_IGE_192_AES][j]); count++)
				AES_ige_encrypt(buf, buf2,
				    (unsigned long) lengths[j], &aes_ks2,
				    iv, AES_ENCRYPT);
			d = Time_F(STOP);
			print_result(D_IGE_192_AES, j, count, d);
		}
	}
	if (doit[D_IGE_256_AES]) {
		for (j = 0; j < SIZE_NUM; j++) {
			print_message(names[D_IGE_256_AES], c[D_IGE_256_AES][j], lengths[j]);
			Time_F(START);
			for (count = 0, run = 1; COND(c[D_IGE_256_AES][j]); count++)
				AES_ige_encrypt(buf, buf2,
				    (unsigned long) lengths[j], &aes_ks3,
				    iv, AES_ENCRYPT);
			d = Time_F(STOP);
			print_result(D_IGE_256_AES, j, count, d);
		}
	}
	if (doit[D_GHASH]) {
		GCM128_CONTEXT *ctx = CRYPTO_gcm128_new(&aes_ks1, (block128_f) AES_encrypt);
		CRYPTO_gcm128_setiv(ctx, (unsigned char *) "0123456789ab", 12);

		for (j = 0; j < SIZE_NUM; j++) {
			print_message(names[D_GHASH], c[D_GHASH][j], lengths[j]);
			Time_F(START);
			for (count = 0, run = 1; COND(c[D_GHASH][j]); count++)
				CRYPTO_gcm128_aad(ctx, buf, lengths[j]);
			d = Time_F(STOP);
			print_result(D_GHASH, j, count, d);
		}
		CRYPTO_gcm128_release(ctx);
	}
	if (doit[D_AES_128_GCM]) {
		const EVP_AEAD *aead = EVP_aead_aes_128_gcm();
		static const unsigned char nonce[32] = {0};
		size_t buf_len, nonce_len;
		EVP_AEAD_CTX *ctx;

		if ((ctx = EVP_AEAD_CTX_new()) == NULL) {
			BIO_printf(bio_err,
			    "Failed to allocate aead context.\n");
			goto end;
		}

		EVP_AEAD_CTX_init(ctx, aead, key32, EVP_AEAD_key_length(aead),
		    EVP_AEAD_DEFAULT_TAG_LENGTH, NULL);
		nonce_len = EVP_AEAD_nonce_length(aead);

		for (j = 0; j < SIZE_NUM; j++) {
			print_message(names[D_AES_128_GCM],c[D_AES_128_GCM][j],lengths[j]);
			Time_F(START);
			for (count = 0, run = 1; COND(c[D_AES_128_GCM][j]); count++)
				EVP_AEAD_CTX_seal(ctx, buf, &buf_len, BUFSIZE, nonce,
				    nonce_len, buf, lengths[j], NULL, 0);
			d=Time_F(STOP);
			print_result(D_AES_128_GCM,j,count,d);
		}
		EVP_AEAD_CTX_free(ctx);
	}

	if (doit[D_AES_256_GCM]) {
		const EVP_AEAD *aead = EVP_aead_aes_256_gcm();
		static const unsigned char nonce[32] = {0};
		size_t buf_len, nonce_len;
		EVP_AEAD_CTX *ctx;

		if ((ctx = EVP_AEAD_CTX_new()) == NULL) {
			BIO_printf(bio_err,
			    "Failed to allocate aead context.\n");
			goto end;
		}

		EVP_AEAD_CTX_init(ctx, aead, key32, EVP_AEAD_key_length(aead),
		EVP_AEAD_DEFAULT_TAG_LENGTH, NULL);
		nonce_len = EVP_AEAD_nonce_length(aead);

		for (j = 0; j < SIZE_NUM; j++) {
			print_message(names[D_AES_256_GCM],c[D_AES_256_GCM][j],lengths[j]);
			Time_F(START);
			for (count = 0, run = 1; COND(c[D_AES_256_GCM][j]); count++)
				EVP_AEAD_CTX_seal(ctx, buf, &buf_len, BUFSIZE, nonce,
				    nonce_len, buf, lengths[j], NULL, 0);
			d=Time_F(STOP);
			print_result(D_AES_256_GCM, j, count, d);
		}
		EVP_AEAD_CTX_free(ctx);
	}
#endif
#if !defined(OPENSSL_NO_CHACHA) && !defined(OPENSSL_NO_POLY1305)
	if (doit[D_CHACHA20_POLY1305]) {
		const EVP_AEAD *aead = EVP_aead_chacha20_poly1305();
		static const unsigned char nonce[32] = {0};
		size_t buf_len, nonce_len;
		EVP_AEAD_CTX *ctx;

		if ((ctx = EVP_AEAD_CTX_new()) == NULL) {
			BIO_printf(bio_err,
			    "Failed to allocate aead context.\n");
			goto end;
		}

		EVP_AEAD_CTX_init(ctx, aead, key32, EVP_AEAD_key_length(aead),
		    EVP_AEAD_DEFAULT_TAG_LENGTH, NULL);
		nonce_len = EVP_AEAD_nonce_length(aead);

		for (j = 0; j < SIZE_NUM; j++) {
			print_message(names[D_CHACHA20_POLY1305],
			    c[D_CHACHA20_POLY1305][j], lengths[j]);
			Time_F(START);
			for (count = 0, run = 1; COND(c[D_CHACHA20_POLY1305][j]); count++)
				EVP_AEAD_CTX_seal(ctx, buf, &buf_len, BUFSIZE, nonce,
				    nonce_len, buf, lengths[j], NULL, 0);
			d=Time_F(STOP);
			print_result(D_CHACHA20_POLY1305, j, count, d);
		}
		EVP_AEAD_CTX_free(ctx);
	}
#endif
#ifndef OPENSSL_NO_CAMELLIA
	if (doit[D_CBC_128_CML]) {
		for (j = 0; j < SIZE_NUM; j++) {
			print_message(names[D_CBC_128_CML], c[D_CBC_128_CML][j], lengths[j]);
			Time_F(START);
			for (count = 0, run = 1; COND(c[D_CBC_128_CML][j]); count++)
				Camellia_cbc_encrypt(buf, buf,
				    (unsigned long) lengths[j], &camellia_ks1,
				    iv, CAMELLIA_ENCRYPT);
			d = Time_F(STOP);
			print_result(D_CBC_128_CML, j, count, d);
		}
	}
	if (doit[D_CBC_192_CML]) {
		for (j = 0; j < SIZE_NUM; j++) {
			print_message(names[D_CBC_192_CML], c[D_CBC_192_CML][j], lengths[j]);
			Time_F(START);
			for (count = 0, run = 1; COND(c[D_CBC_192_CML][j]); count++)
				Camellia_cbc_encrypt(buf, buf,
				    (unsigned long) lengths[j], &camellia_ks2,
				    iv, CAMELLIA_ENCRYPT);
			d = Time_F(STOP);
			print_result(D_CBC_192_CML, j, count, d);
		}
	}
	if (doit[D_CBC_256_CML]) {
		for (j = 0; j < SIZE_NUM; j++) {
			print_message(names[D_CBC_256_CML], c[D_CBC_256_CML][j], lengths[j]);
			Time_F(START);
			for (count = 0, run = 1; COND(c[D_CBC_256_CML][j]); count++)
				Camellia_cbc_encrypt(buf, buf,
				    (unsigned long) lengths[j], &camellia_ks3,
				    iv, CAMELLIA_ENCRYPT);
			d = Time_F(STOP);
			print_result(D_CBC_256_CML, j, count, d);
		}
	}
#endif
#ifndef OPENSSL_NO_IDEA
	if (doit[D_CBC_IDEA]) {
		for (j = 0; j < SIZE_NUM; j++) {
			print_message(names[D_CBC_IDEA], c[D_CBC_IDEA][j], lengths[j]);
			Time_F(START);
			for (count = 0, run = 1; COND(c[D_CBC_IDEA][j]); count++)
				idea_cbc_encrypt(buf, buf,
				    (unsigned long) lengths[j], &idea_ks,
				    iv, IDEA_ENCRYPT);
			d = Time_F(STOP);
			print_result(D_CBC_IDEA, j, count, d);
		}
	}
#endif
#ifndef OPENSSL_NO_RC2
	if (doit[D_CBC_RC2]) {
		for (j = 0; j < SIZE_NUM; j++) {
			print_message(names[D_CBC_RC2], c[D_CBC_RC2][j], lengths[j]);
			Time_F(START);
			for (count = 0, run = 1; COND(c[D_CBC_RC2][j]); count++)
				RC2_cbc_encrypt(buf, buf,
				    (unsigned long) lengths[j], &rc2_ks,
				    iv, RC2_ENCRYPT);
			d = Time_F(STOP);
			print_result(D_CBC_RC2, j, count, d);
		}
	}
#endif
#ifndef OPENSSL_NO_BF
	if (doit[D_CBC_BF]) {
		for (j = 0; j < SIZE_NUM; j++) {
			print_message(names[D_CBC_BF], c[D_CBC_BF][j], lengths[j]);
			Time_F(START);
			for (count = 0, run = 1; COND(c[D_CBC_BF][j]); count++)
				BF_cbc_encrypt(buf, buf,
				    (unsigned long) lengths[j], &bf_ks,
				    iv, BF_ENCRYPT);
			d = Time_F(STOP);
			print_result(D_CBC_BF, j, count, d);
		}
	}
#endif
#ifndef OPENSSL_NO_CAST
	if (doit[D_CBC_CAST]) {
		for (j = 0; j < SIZE_NUM; j++) {
			print_message(names[D_CBC_CAST], c[D_CBC_CAST][j], lengths[j]);
			Time_F(START);
			for (count = 0, run = 1; COND(c[D_CBC_CAST][j]); count++)
				CAST_cbc_encrypt(buf, buf,
				    (unsigned long) lengths[j], &cast_ks,
				    iv, CAST_ENCRYPT);
			d = Time_F(STOP);
			print_result(D_CBC_CAST, j, count, d);
		}
	}
#endif

	if (doit[D_EVP]) {
		for (j = 0; j < SIZE_NUM; j++) {
			if (evp_cipher) {
				EVP_CIPHER_CTX *ctx;
				int outl;

				names[D_EVP] =
				    OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher));
				/*
				 * -O3 -fschedule-insns messes up an
				 * optimization here!  names[D_EVP] somehow
				 * becomes NULL
				 */
				print_message(names[D_EVP], save_count,
				    lengths[j]);

				if ((ctx = EVP_CIPHER_CTX_new()) == NULL) {
					BIO_printf(bio_err, "Failed to "
					    "allocate cipher context.\n");
					goto end;
				}
				if (decrypt)
					EVP_DecryptInit_ex(ctx, evp_cipher, NULL, key16, iv);
				else
					EVP_EncryptInit_ex(ctx, evp_cipher, NULL, key16, iv);
				EVP_CIPHER_CTX_set_padding(ctx, 0);

				Time_F(START);
				if (decrypt)
					for (count = 0, run = 1; COND(save_count * 4 * lengths[0] / lengths[j]); count++)
						EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[j]);
				else
					for (count = 0, run = 1; COND(save_count * 4 * lengths[0] / lengths[j]); count++)
						EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[j]);
				if (decrypt)
					EVP_DecryptFinal_ex(ctx, buf, &outl);
				else
					EVP_EncryptFinal_ex(ctx, buf, &outl);
				d = Time_F(STOP);
				EVP_CIPHER_CTX_free(ctx);
			}
			if (evp_md) {
				names[D_EVP] = OBJ_nid2ln(EVP_MD_type(evp_md));
				print_message(names[D_EVP], save_count,
				    lengths[j]);

				Time_F(START);
				for (count = 0, run = 1; COND(save_count * 4 * lengths[0] / lengths[j]); count++)
					EVP_Digest(buf, lengths[j], &(md[0]), NULL, evp_md, NULL);

				d = Time_F(STOP);
			}
			print_result(D_EVP, j, count, d);
		}
	}
	arc4random_buf(buf, 36);
	for (j = 0; j < RSA_NUM; j++) {
		int ret;
		if (!rsa_doit[j])
			continue;
		ret = RSA_sign(NID_md5_sha1, buf, 36, buf2, &rsa_num, rsa_key[j]);
		if (ret == 0) {
			BIO_printf(bio_err, "RSA sign failure.  No RSA sign will be done.\n");
			ERR_print_errors(bio_err);
			rsa_count = 1;
		} else {
			pkey_print_message("private", "rsa",
			    rsa_c[j][0], rsa_bits[j],
			    RSA_SECONDS);
/*			RSA_blinding_on(rsa_key[j],NULL); */
			Time_F(START);
			for (count = 0, run = 1; COND(rsa_c[j][0]); count++) {
				ret = RSA_sign(NID_md5_sha1, buf, 36, buf2,
				    &rsa_num, rsa_key[j]);
				if (ret == 0) {
					BIO_printf(bio_err,
					    "RSA sign failure\n");
					ERR_print_errors(bio_err);
					count = 1;
					break;
				}
			}
			d = Time_F(STOP);
			BIO_printf(bio_err, mr ? "+R1:%ld:%d:%.2f\n"
			    : "%ld %d bit private RSA in %.2fs\n",
			    count, rsa_bits[j], d);
			rsa_results[j][0] = d / (double) count;
			rsa_count = count;
		}

		ret = RSA_verify(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[j]);
		if (ret <= 0) {
			BIO_printf(bio_err, "RSA verify failure.  No RSA verify will be done.\n");
			ERR_print_errors(bio_err);
			rsa_doit[j] = 0;
		} else {
			pkey_print_message("public", "rsa",
			    rsa_c[j][1], rsa_bits[j],
			    RSA_SECONDS);
			Time_F(START);
			for (count = 0, run = 1; COND(rsa_c[j][1]); count++) {
				ret = RSA_verify(NID_md5_sha1, buf, 36, buf2,
				    rsa_num, rsa_key[j]);
				if (ret <= 0) {
					BIO_printf(bio_err,
					    "RSA verify failure\n");
					ERR_print_errors(bio_err);
					count = 1;
					break;
				}
			}
			d = Time_F(STOP);
			BIO_printf(bio_err, mr ? "+R2:%ld:%d:%.2f\n"
			    : "%ld %d bit public RSA in %.2fs\n",
			    count, rsa_bits[j], d);
			rsa_results[j][1] = d / (double) count;
		}

		if (rsa_count <= 1) {
			/* if longer than 10s, don't do any more */
			for (j++; j < RSA_NUM; j++)
				rsa_doit[j] = 0;
		}
	}

	arc4random_buf(buf, 20);
	for (j = 0; j < DSA_NUM; j++) {
		unsigned int kk;
		int ret;

		if (!dsa_doit[j])
			continue;
/*		DSA_generate_key(dsa_key[j]); */
/*		DSA_sign_setup(dsa_key[j],NULL); */
		ret = DSA_sign(EVP_PKEY_DSA, buf, 20, buf2,
		    &kk, dsa_key[j]);
		if (ret == 0) {
			BIO_printf(bio_err, "DSA sign failure.  No DSA sign will be done.\n");
			ERR_print_errors(bio_err);
			rsa_count = 1;
		} else {
			pkey_print_message("sign", "dsa",
			    dsa_c[j][0], dsa_bits[j],
			    DSA_SECONDS);
			Time_F(START);
			for (count = 0, run = 1; COND(dsa_c[j][0]); count++) {
				ret = DSA_sign(EVP_PKEY_DSA, buf, 20, buf2,
				    &kk, dsa_key[j]);
				if (ret == 0) {
					BIO_printf(bio_err,
					    "DSA sign failure\n");
					ERR_print_errors(bio_err);
					count = 1;
					break;
				}
			}
			d = Time_F(STOP);
			BIO_printf(bio_err, mr ? "+R3:%ld:%d:%.2f\n"
			    : "%ld %d bit DSA signs in %.2fs\n",
			    count, dsa_bits[j], d);
			dsa_results[j][0] = d / (double) count;
			rsa_count = count;
		}

		ret = DSA_verify(EVP_PKEY_DSA, buf, 20, buf2,
		    kk, dsa_key[j]);
		if (ret <= 0) {
			BIO_printf(bio_err, "DSA verify failure.  No DSA verify will be done.\n");
			ERR_print_errors(bio_err);
			dsa_doit[j] = 0;
		} else {
			pkey_print_message("verify", "dsa",
			    dsa_c[j][1], dsa_bits[j],
			    DSA_SECONDS);
			Time_F(START);
			for (count = 0, run = 1; COND(dsa_c[j][1]); count++) {
				ret = DSA_verify(EVP_PKEY_DSA, buf, 20, buf2,
				    kk, dsa_key[j]);
				if (ret <= 0) {
					BIO_printf(bio_err,
					    "DSA verify failure\n");
					ERR_print_errors(bio_err);
					count = 1;
					break;
				}
			}
			d = Time_F(STOP);
			BIO_printf(bio_err, mr ? "+R4:%ld:%d:%.2f\n"
			    : "%ld %d bit DSA verify in %.2fs\n",
			    count, dsa_bits[j], d);
			dsa_results[j][1] = d / (double) count;
		}

		if (rsa_count <= 1) {
			/* if longer than 10s, don't do any more */
			for (j++; j < DSA_NUM; j++)
				dsa_doit[j] = 0;
		}
	}

	for (j = 0; j < EC_NUM; j++) {
		int ret;

		if (!ecdsa_doit[j])
			continue;	/* Ignore Curve */
		ecdsa[j] = EC_KEY_new_by_curve_name(test_curves[j]);
		if (ecdsa[j] == NULL) {
			BIO_printf(bio_err, "ECDSA failure.\n");
			ERR_print_errors(bio_err);
			rsa_count = 1;
		} else {
			EC_KEY_precompute_mult(ecdsa[j], NULL);

			/* Perform ECDSA signature test */
			EC_KEY_generate_key(ecdsa[j]);
			ret = ECDSA_sign(0, buf, 20, ecdsasig,
			    &ecdsasiglen, ecdsa[j]);
			if (ret == 0) {
				BIO_printf(bio_err, "ECDSA sign failure.  No ECDSA sign will be done.\n");
				ERR_print_errors(bio_err);
				rsa_count = 1;
			} else {
				pkey_print_message("sign", "ecdsa",
				    ecdsa_c[j][0],
				    test_curves_bits[j],
				    ECDSA_SECONDS);

				Time_F(START);
				for (count = 0, run = 1; COND(ecdsa_c[j][0]);
				    count++) {
					ret = ECDSA_sign(0, buf, 20,
					    ecdsasig, &ecdsasiglen,
					    ecdsa[j]);
					if (ret == 0) {
						BIO_printf(bio_err, "ECDSA sign failure\n");
						ERR_print_errors(bio_err);
						count = 1;
						break;
					}
				}
				d = Time_F(STOP);

				BIO_printf(bio_err, mr ? "+R5:%ld:%d:%.2f\n" :
				    "%ld %d bit ECDSA signs in %.2fs \n",
				    count, test_curves_bits[j], d);
				ecdsa_results[j][0] = d / (double) count;
				rsa_count = count;
			}

			/* Perform ECDSA verification test */
			ret = ECDSA_verify(0, buf, 20, ecdsasig,
			    ecdsasiglen, ecdsa[j]);
			if (ret != 1) {
				BIO_printf(bio_err, "ECDSA verify failure.  No ECDSA verify will be done.\n");
				ERR_print_errors(bio_err);
				ecdsa_doit[j] = 0;
			} else {
				pkey_print_message("verify", "ecdsa",
				    ecdsa_c[j][1],
				    test_curves_bits[j],
				    ECDSA_SECONDS);
				Time_F(START);
				for (count = 0, run = 1; COND(ecdsa_c[j][1]); count++) {
					ret = ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[j]);
					if (ret != 1) {
						BIO_printf(bio_err, "ECDSA verify failure\n");
						ERR_print_errors(bio_err);
						count = 1;
						break;
					}
				}
				d = Time_F(STOP);
				BIO_printf(bio_err, mr ? "+R6:%ld:%d:%.2f\n"
				    : "%ld %d bit ECDSA verify in %.2fs\n",
				    count, test_curves_bits[j], d);
				ecdsa_results[j][1] = d / (double) count;
			}

			if (rsa_count <= 1) {
				/* if longer than 10s, don't do any more */
				for (j++; j < EC_NUM; j++)
					ecdsa_doit[j] = 0;
			}
		}
	}

	for (j = 0; j < EC_NUM; j++) {
		if (!ecdh_doit[j])
			continue;
		ecdh_a[j] = EC_KEY_new_by_curve_name(test_curves[j]);
		ecdh_b[j] = EC_KEY_new_by_curve_name(test_curves[j]);
		if ((ecdh_a[j] == NULL) || (ecdh_b[j] == NULL)) {
			BIO_printf(bio_err, "ECDH failure.\n");
			ERR_print_errors(bio_err);
			rsa_count = 1;
		} else {
			/* generate two ECDH key pairs */
			if (!EC_KEY_generate_key(ecdh_a[j]) ||
			    !EC_KEY_generate_key(ecdh_b[j])) {
				BIO_printf(bio_err, "ECDH key generation failure.\n");
				ERR_print_errors(bio_err);
				rsa_count = 1;
			} else {
				/*
				 * If field size is not more than 24 octets,
				 * then use SHA-1 hash of result; otherwise,
				 * use result (see section 4.8 of
				 * draft-ietf-tls-ecc-03.txt).
				 */
				int field_size, outlen;
				void *(*kdf) (const void *in, size_t inlen, void *out, size_t * xoutlen);
				field_size = EC_GROUP_get_degree(EC_KEY_get0_group(ecdh_a[j]));
				if (field_size <= 24 * 8) {
					outlen = KDF1_SHA1_len;
					kdf = KDF1_SHA1;
				} else {
					outlen = (field_size + 7) / 8;
					kdf = NULL;
				}
				secret_size_a = ECDH_compute_key(secret_a, outlen,
				    EC_KEY_get0_public_key(ecdh_b[j]),
				    ecdh_a[j], kdf);
				secret_size_b = ECDH_compute_key(secret_b, outlen,
				    EC_KEY_get0_public_key(ecdh_a[j]),
				    ecdh_b[j], kdf);
				if (secret_size_a != secret_size_b)
					ecdh_checks = 0;
				else
					ecdh_checks = 1;

				for (secret_idx = 0;
				    (secret_idx < secret_size_a)
				    && (ecdh_checks == 1);
				    secret_idx++) {
					if (secret_a[secret_idx] != secret_b[secret_idx])
						ecdh_checks = 0;
				}

				if (ecdh_checks == 0) {
					BIO_printf(bio_err,
					    "ECDH computations don't match.\n");
					ERR_print_errors(bio_err);
					rsa_count = 1;
				} else {
					pkey_print_message("", "ecdh",
					    ecdh_c[j][0],
					    test_curves_bits[j],
					    ECDH_SECONDS);
					Time_F(START);
					for (count = 0, run = 1;
					     COND(ecdh_c[j][0]); count++) {
						ECDH_compute_key(secret_a,
						    outlen,
						    EC_KEY_get0_public_key(ecdh_b[j]),
						    ecdh_a[j], kdf);
					}
					d = Time_F(STOP);
					BIO_printf(bio_err, mr
					    ? "+R7:%ld:%d:%.2f\n"
					    : "%ld %d-bit ECDH ops in %.2fs\n",
					    count, test_curves_bits[j], d);
					ecdh_results[j][0] = d / (double) count;
					rsa_count = count;
				}
			}
		}


		if (rsa_count <= 1) {
			/* if longer than 10s, don't do any more */
			for (j++; j < EC_NUM; j++)
				ecdh_doit[j] = 0;
		}
	}
show_res:
	if (!mr) {
		fprintf(stdout, "%s\n", SSLeay_version(SSLEAY_VERSION));
		fprintf(stdout, "%s\n", SSLeay_version(SSLEAY_BUILT_ON));
		printf("options:");
		printf("%s ", BN_options());
#ifndef OPENSSL_NO_RC4
		printf("%s ", RC4_options());
#endif
#ifndef OPENSSL_NO_DES
		printf("%s ", DES_options());
#endif
#ifndef OPENSSL_NO_AES
		printf("%s ", AES_options());
#endif
#ifndef OPENSSL_NO_IDEA
		printf("%s ", idea_options());
#endif
#ifndef OPENSSL_NO_BF
		printf("%s ", BF_options());
#endif
		fprintf(stdout, "\n%s\n", SSLeay_version(SSLEAY_CFLAGS));
	}
	if (pr_header) {
		if (mr)
			fprintf(stdout, "+H");
		else {
			fprintf(stdout, "The 'numbers' are in 1000s of bytes per second processed.\n");
			fprintf(stdout, "type        ");
		}
		for (j = 0; j < SIZE_NUM; j++)
			fprintf(stdout, mr ? ":%d" : "%7d bytes", lengths[j]);
		fprintf(stdout, "\n");
	}
	for (k = 0; k < ALGOR_NUM; k++) {
		if (!doit[k])
			continue;
		if (mr)
			fprintf(stdout, "+F:%d:%s", k, names[k]);
		else
			fprintf(stdout, "%-13s", names[k]);
		for (j = 0; j < SIZE_NUM; j++) {
			if (results[k][j] > 10000 && !mr)
				fprintf(stdout, " %11.2fk", results[k][j] / 1e3);
			else
				fprintf(stdout, mr ? ":%.2f" : " %11.2f ", results[k][j]);
		}
		fprintf(stdout, "\n");
	}
	j = 1;
	for (k = 0; k < RSA_NUM; k++) {
		if (!rsa_doit[k])
			continue;
		if (j && !mr) {
			printf("%18ssign    verify    sign/s verify/s\n", " ");
			j = 0;
		}
		if (mr)
			fprintf(stdout, "+F2:%u:%u:%f:%f\n",
			    k, rsa_bits[k], rsa_results[k][0],
			    rsa_results[k][1]);
		else
			fprintf(stdout, "rsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
			    rsa_bits[k], rsa_results[k][0], rsa_results[k][1],
			    1.0 / rsa_results[k][0], 1.0 / rsa_results[k][1]);
	}
	j = 1;
	for (k = 0; k < DSA_NUM; k++) {
		if (!dsa_doit[k])
			continue;
		if (j && !mr) {
			printf("%18ssign    verify    sign/s verify/s\n", " ");
			j = 0;
		}
		if (mr)
			fprintf(stdout, "+F3:%u:%u:%f:%f\n",
			    k, dsa_bits[k], dsa_results[k][0], dsa_results[k][1]);
		else
			fprintf(stdout, "dsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
			    dsa_bits[k], dsa_results[k][0], dsa_results[k][1],
			    1.0 / dsa_results[k][0], 1.0 / dsa_results[k][1]);
	}
	j = 1;
	for (k = 0; k < EC_NUM; k++) {
		if (!ecdsa_doit[k])
			continue;
		if (j && !mr) {
			printf("%30ssign    verify    sign/s verify/s\n", " ");
			j = 0;
		}
		if (mr)
			fprintf(stdout, "+F4:%u:%u:%f:%f\n",
			    k, test_curves_bits[k],
			    ecdsa_results[k][0], ecdsa_results[k][1]);
		else
			fprintf(stdout,
			    "%4u bit ecdsa (%s) %8.4fs %8.4fs %8.1f %8.1f\n",
			    test_curves_bits[k],
			    test_curves_names[k],
			    ecdsa_results[k][0], ecdsa_results[k][1],
			    1.0 / ecdsa_results[k][0], 1.0 / ecdsa_results[k][1]);
	}


	j = 1;
	for (k = 0; k < EC_NUM; k++) {
		if (!ecdh_doit[k])
			continue;
		if (j && !mr) {
			printf("%30sop      op/s\n", " ");
			j = 0;
		}
		if (mr)
			fprintf(stdout, "+F5:%u:%u:%f:%f\n",
			    k, test_curves_bits[k],
			    ecdh_results[k][0], 1.0 / ecdh_results[k][0]);

		else
			fprintf(stdout, "%4u bit ecdh (%s) %8.4fs %8.1f\n",
			    test_curves_bits[k],
			    test_curves_names[k],
			    ecdh_results[k][0], 1.0 / ecdh_results[k][0]);
	}

	mret = 0;

 end:
	ERR_print_errors(bio_err);
	free(real_buf);
	free(real_buf2);
	for (i = 0; i < RSA_NUM; i++)
		if (rsa_key[i] != NULL)
			RSA_free(rsa_key[i]);
	for (i = 0; i < DSA_NUM; i++)
		if (dsa_key[i] != NULL)
			DSA_free(dsa_key[i]);

	for (i = 0; i < EC_NUM; i++)
		if (ecdsa[i] != NULL)
			EC_KEY_free(ecdsa[i]);
	for (i = 0; i < EC_NUM; i++) {
		if (ecdh_a[i] != NULL)
			EC_KEY_free(ecdh_a[i]);
		if (ecdh_b[i] != NULL)
			EC_KEY_free(ecdh_b[i]);
	}


	return (mret);
}

static void
print_message(const char *s, long num, int length)
{
	BIO_printf(bio_err, mr ? "+DT:%s:%d:%d\n"
	    : "Doing %s for %ds on %d size blocks: ", s, SECONDS, length);
	(void) BIO_flush(bio_err);
	alarm(SECONDS);
}

static void
pkey_print_message(const char *str, const char *str2, long num,
    int bits, int tm)
{
	BIO_printf(bio_err, mr ? "+DTP:%d:%s:%s:%d\n"
	    : "Doing %d bit %s %s for %ds: ", bits, str, str2, tm);
	(void) BIO_flush(bio_err);
	alarm(tm);
}

static void
print_result(int alg, int run_no, int count, double time_used)
{
	BIO_printf(bio_err, mr ? "+R:%d:%s:%f\n"
	    : "%d %s in %.2fs\n", count, names[alg], time_used);
	results[alg][run_no] = ((double) count) / time_used * lengths[run_no];
}

static char *
sstrsep(char **string, const char *delim)
{
	char isdelim[256];
	char *token = *string;

	if (**string == 0)
		return NULL;

	memset(isdelim, 0, sizeof isdelim);
	isdelim[0] = 1;

	while (*delim) {
		isdelim[(unsigned char) (*delim)] = 1;
		delim++;
	}

	while (!isdelim[(unsigned char) (**string)]) {
		(*string)++;
	}

	if (**string) {
		**string = 0;
		(*string)++;
	}
	return token;
}

static int
do_multi(int multi)
{
	int n;
	int fd[2];
	int *fds;
	static char sep[] = ":";
	const char *errstr = NULL;

	fds = reallocarray(NULL, multi, sizeof *fds);
	if (fds == NULL) {
		fprintf(stderr, "reallocarray failure\n");
		exit(1);
	}
	for (n = 0; n < multi; ++n) {
		if (pipe(fd) == -1) {
			fprintf(stderr, "pipe failure\n");
			exit(1);
		}
		fflush(stdout);
		fflush(stderr);
		if (fork()) {
			close(fd[1]);
			fds[n] = fd[0];
		} else {
			close(fd[0]);
			close(1);
			if (dup(fd[1]) == -1) {
				fprintf(stderr, "dup failed\n");
				exit(1);
			}
			close(fd[1]);
			mr = 1;
			usertime = 0;
			free(fds);
			return 0;
		}
		printf("Forked child %d\n", n);
	}

	/* for now, assume the pipe is long enough to take all the output */
	for (n = 0; n < multi; ++n) {
		FILE *f;
		char buf[1024];
		char *p;

		f = fdopen(fds[n], "r");
		while (fgets(buf, sizeof buf, f)) {
			p = strchr(buf, '\n');
			if (p)
				*p = '\0';
			if (buf[0] != '+') {
				fprintf(stderr, "Don't understand line '%s' from child %d\n",
				    buf, n);
				continue;
			}
			printf("Got: %s from %d\n", buf, n);
			if (!strncmp(buf, "+F:", 3)) {
				int alg;
				int j;

				p = buf + 3;
				alg = strtonum(sstrsep(&p, sep),
				    0, ALGOR_NUM - 1, &errstr);
				sstrsep(&p, sep);
				for (j = 0; j < SIZE_NUM; ++j)
					results[alg][j] += atof(sstrsep(&p, sep));
			} else if (!strncmp(buf, "+F2:", 4)) {
				int k;
				double d;

				p = buf + 4;
				k = strtonum(sstrsep(&p, sep),
				    0, ALGOR_NUM - 1, &errstr);
				sstrsep(&p, sep);

				d = atof(sstrsep(&p, sep));
				if (n)
					rsa_results[k][0] = 1 / (1 / rsa_results[k][0] + 1 / d);
				else
					rsa_results[k][0] = d;

				d = atof(sstrsep(&p, sep));
				if (n)
					rsa_results[k][1] = 1 / (1 / rsa_results[k][1] + 1 / d);
				else
					rsa_results[k][1] = d;
			} else if (!strncmp(buf, "+F2:", 4)) {
				int k;
				double d;

				p = buf + 4;
				k = strtonum(sstrsep(&p, sep),
				    0, ALGOR_NUM - 1, &errstr);
				sstrsep(&p, sep);

				d = atof(sstrsep(&p, sep));
				if (n)
					rsa_results[k][0] = 1 / (1 / rsa_results[k][0] + 1 / d);
				else
					rsa_results[k][0] = d;

				d = atof(sstrsep(&p, sep));
				if (n)
					rsa_results[k][1] = 1 / (1 / rsa_results[k][1] + 1 / d);
				else
					rsa_results[k][1] = d;
			}
			else if (!strncmp(buf, "+F3:", 4)) {
				int k;
				double d;

				p = buf + 4;
				k = strtonum(sstrsep(&p, sep),
				    0, ALGOR_NUM - 1, &errstr);
				sstrsep(&p, sep);

				d = atof(sstrsep(&p, sep));
				if (n)
					dsa_results[k][0] = 1 / (1 / dsa_results[k][0] + 1 / d);
				else
					dsa_results[k][0] = d;

				d = atof(sstrsep(&p, sep));
				if (n)
					dsa_results[k][1] = 1 / (1 / dsa_results[k][1] + 1 / d);
				else
					dsa_results[k][1] = d;
			}
			else if (!strncmp(buf, "+F4:", 4)) {
				int k;
				double d;

				p = buf + 4;
				k = strtonum(sstrsep(&p, sep),
				    0, ALGOR_NUM - 1, &errstr);
				sstrsep(&p, sep);

				d = atof(sstrsep(&p, sep));
				if (n)
					ecdsa_results[k][0] = 1 / (1 / ecdsa_results[k][0] + 1 / d);
				else
					ecdsa_results[k][0] = d;

				d = atof(sstrsep(&p, sep));
				if (n)
					ecdsa_results[k][1] = 1 / (1 / ecdsa_results[k][1] + 1 / d);
				else
					ecdsa_results[k][1] = d;
			}

			else if (!strncmp(buf, "+F5:", 4)) {
				int k;
				double d;

				p = buf + 4;
				k = strtonum(sstrsep(&p, sep),
				    0, ALGOR_NUM - 1, &errstr);
				sstrsep(&p, sep);

				d = atof(sstrsep(&p, sep));
				if (n)
					ecdh_results[k][0] = 1 / (1 / ecdh_results[k][0] + 1 / d);
				else
					ecdh_results[k][0] = d;

			}

			else if (!strncmp(buf, "+H:", 3)) {
			} else
				fprintf(stderr, "Unknown type '%s' from child %d\n", buf, n);
		}

		fclose(f);
	}
	free(fds);
	return 1;
}
#endif