[BACK]Return to key.c CVS log [TXT][DIR] Up to [local] / src / usr.bin / ssh

Annotation of src/usr.bin/ssh/key.c, Revision 1.71

1.71    ! otto        1: /* $OpenBSD: key.c,v 1.70 2008/06/11 21:01:35 grunk Exp $ */
1.1       markus      2: /*
1.11      deraadt     3:  * read_bignum():
                      4:  * Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland
                      5:  *
                      6:  * As far as I am concerned, the code I have written for this software
                      7:  * can be used freely for any purpose.  Any derived versions of this
                      8:  * software must be clearly marked as such, and if the derived work is
                      9:  * incompatible with the protocol description in the RFC file, it must be
                     10:  * called by a name other than "ssh" or "Secure Shell".
                     11:  *
                     12:  *
1.28      markus     13:  * Copyright (c) 2000, 2001 Markus Friedl.  All rights reserved.
1.1       markus     14:  *
                     15:  * Redistribution and use in source and binary forms, with or without
                     16:  * modification, are permitted provided that the following conditions
                     17:  * are met:
                     18:  * 1. Redistributions of source code must retain the above copyright
                     19:  *    notice, this list of conditions and the following disclaimer.
                     20:  * 2. Redistributions in binary form must reproduce the above copyright
                     21:  *    notice, this list of conditions and the following disclaimer in the
                     22:  *    documentation and/or other materials provided with the distribution.
                     23:  *
                     24:  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
                     25:  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
                     26:  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
                     27:  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
                     28:  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
                     29:  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
                     30:  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
                     31:  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
                     32:  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
                     33:  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
                     34:  */
1.67      deraadt    35:
1.70      grunk      36: #include <sys/param.h>
1.67      deraadt    37: #include <sys/types.h>
1.1       markus     38:
1.2       markus     39: #include <openssl/evp.h>
1.65      stevesk    40:
1.66      stevesk    41: #include <stdio.h>
1.65      stevesk    42: #include <string.h>
1.15      markus     43:
1.1       markus     44: #include "xmalloc.h"
                     45: #include "key.h"
1.12      markus     46: #include "rsa.h"
1.3       markus     47: #include "uuencode.h"
1.12      markus     48: #include "buffer.h"
1.15      markus     49: #include "log.h"
1.1       markus     50:
                     51: Key *
                     52: key_new(int type)
                     53: {
                     54:        Key *k;
                     55:        RSA *rsa;
                     56:        DSA *dsa;
1.63      djm        57:        k = xcalloc(1, sizeof(*k));
1.1       markus     58:        k->type = type;
1.3       markus     59:        k->dsa = NULL;
                     60:        k->rsa = NULL;
1.1       markus     61:        switch (k->type) {
1.12      markus     62:        case KEY_RSA1:
1.1       markus     63:        case KEY_RSA:
1.38      markus     64:                if ((rsa = RSA_new()) == NULL)
                     65:                        fatal("key_new: RSA_new failed");
                     66:                if ((rsa->n = BN_new()) == NULL)
                     67:                        fatal("key_new: BN_new failed");
                     68:                if ((rsa->e = BN_new()) == NULL)
                     69:                        fatal("key_new: BN_new failed");
1.1       markus     70:                k->rsa = rsa;
                     71:                break;
                     72:        case KEY_DSA:
1.38      markus     73:                if ((dsa = DSA_new()) == NULL)
                     74:                        fatal("key_new: DSA_new failed");
                     75:                if ((dsa->p = BN_new()) == NULL)
                     76:                        fatal("key_new: BN_new failed");
                     77:                if ((dsa->q = BN_new()) == NULL)
                     78:                        fatal("key_new: BN_new failed");
                     79:                if ((dsa->g = BN_new()) == NULL)
                     80:                        fatal("key_new: BN_new failed");
                     81:                if ((dsa->pub_key = BN_new()) == NULL)
                     82:                        fatal("key_new: BN_new failed");
1.1       markus     83:                k->dsa = dsa;
                     84:                break;
1.12      markus     85:        case KEY_UNSPEC:
1.1       markus     86:                break;
                     87:        default:
                     88:                fatal("key_new: bad key type %d", k->type);
                     89:                break;
                     90:        }
                     91:        return k;
                     92: }
1.45      deraadt    93:
1.12      markus     94: Key *
                     95: key_new_private(int type)
                     96: {
                     97:        Key *k = key_new(type);
                     98:        switch (k->type) {
                     99:        case KEY_RSA1:
                    100:        case KEY_RSA:
1.38      markus    101:                if ((k->rsa->d = BN_new()) == NULL)
                    102:                        fatal("key_new_private: BN_new failed");
                    103:                if ((k->rsa->iqmp = BN_new()) == NULL)
                    104:                        fatal("key_new_private: BN_new failed");
                    105:                if ((k->rsa->q = BN_new()) == NULL)
                    106:                        fatal("key_new_private: BN_new failed");
                    107:                if ((k->rsa->p = BN_new()) == NULL)
                    108:                        fatal("key_new_private: BN_new failed");
                    109:                if ((k->rsa->dmq1 = BN_new()) == NULL)
                    110:                        fatal("key_new_private: BN_new failed");
                    111:                if ((k->rsa->dmp1 = BN_new()) == NULL)
                    112:                        fatal("key_new_private: BN_new failed");
1.12      markus    113:                break;
                    114:        case KEY_DSA:
1.38      markus    115:                if ((k->dsa->priv_key = BN_new()) == NULL)
                    116:                        fatal("key_new_private: BN_new failed");
1.12      markus    117:                break;
                    118:        case KEY_UNSPEC:
                    119:                break;
                    120:        default:
                    121:                break;
                    122:        }
                    123:        return k;
                    124: }
1.45      deraadt   125:
1.1       markus    126: void
                    127: key_free(Key *k)
                    128: {
1.60      djm       129:        if (k == NULL)
1.62      deraadt   130:                fatal("key_free: key is NULL");
1.1       markus    131:        switch (k->type) {
1.12      markus    132:        case KEY_RSA1:
1.1       markus    133:        case KEY_RSA:
                    134:                if (k->rsa != NULL)
                    135:                        RSA_free(k->rsa);
                    136:                k->rsa = NULL;
                    137:                break;
                    138:        case KEY_DSA:
                    139:                if (k->dsa != NULL)
                    140:                        DSA_free(k->dsa);
                    141:                k->dsa = NULL;
                    142:                break;
1.12      markus    143:        case KEY_UNSPEC:
                    144:                break;
1.1       markus    145:        default:
                    146:                fatal("key_free: bad key type %d", k->type);
                    147:                break;
                    148:        }
                    149:        xfree(k);
                    150: }
1.55      jakob     151:
1.1       markus    152: int
1.55      jakob     153: key_equal(const Key *a, const Key *b)
1.1       markus    154: {
                    155:        if (a == NULL || b == NULL || a->type != b->type)
                    156:                return 0;
                    157:        switch (a->type) {
1.12      markus    158:        case KEY_RSA1:
1.1       markus    159:        case KEY_RSA:
                    160:                return a->rsa != NULL && b->rsa != NULL &&
                    161:                    BN_cmp(a->rsa->e, b->rsa->e) == 0 &&
                    162:                    BN_cmp(a->rsa->n, b->rsa->n) == 0;
                    163:        case KEY_DSA:
                    164:                return a->dsa != NULL && b->dsa != NULL &&
                    165:                    BN_cmp(a->dsa->p, b->dsa->p) == 0 &&
                    166:                    BN_cmp(a->dsa->q, b->dsa->q) == 0 &&
                    167:                    BN_cmp(a->dsa->g, b->dsa->g) == 0 &&
                    168:                    BN_cmp(a->dsa->pub_key, b->dsa->pub_key) == 0;
                    169:        default:
1.3       markus    170:                fatal("key_equal: bad key type %d", a->type);
1.1       markus    171:        }
                    172: }
                    173:
1.52      jakob     174: u_char*
1.55      jakob     175: key_fingerprint_raw(const Key *k, enum fp_type dgst_type,
                    176:     u_int *dgst_raw_length)
1.1       markus    177: {
1.41      markus    178:        const EVP_MD *md = NULL;
1.21      markus    179:        EVP_MD_CTX ctx;
1.13      markus    180:        u_char *blob = NULL;
1.19      jakob     181:        u_char *retval = NULL;
1.40      markus    182:        u_int len = 0;
1.3       markus    183:        int nlen, elen;
1.1       markus    184:
1.19      jakob     185:        *dgst_raw_length = 0;
                    186:
1.21      markus    187:        switch (dgst_type) {
                    188:        case SSH_FP_MD5:
                    189:                md = EVP_md5();
                    190:                break;
                    191:        case SSH_FP_SHA1:
                    192:                md = EVP_sha1();
                    193:                break;
                    194:        default:
                    195:                fatal("key_fingerprint_raw: bad digest type %d",
                    196:                    dgst_type);
                    197:        }
1.1       markus    198:        switch (k->type) {
1.12      markus    199:        case KEY_RSA1:
1.1       markus    200:                nlen = BN_num_bytes(k->rsa->n);
                    201:                elen = BN_num_bytes(k->rsa->e);
                    202:                len = nlen + elen;
1.3       markus    203:                blob = xmalloc(len);
                    204:                BN_bn2bin(k->rsa->n, blob);
                    205:                BN_bn2bin(k->rsa->e, blob + nlen);
1.1       markus    206:                break;
                    207:        case KEY_DSA:
1.12      markus    208:        case KEY_RSA:
                    209:                key_to_blob(k, &blob, &len);
                    210:                break;
                    211:        case KEY_UNSPEC:
                    212:                return retval;
1.1       markus    213:        default:
1.19      jakob     214:                fatal("key_fingerprint_raw: bad key type %d", k->type);
1.1       markus    215:                break;
                    216:        }
1.3       markus    217:        if (blob != NULL) {
1.19      jakob     218:                retval = xmalloc(EVP_MAX_MD_SIZE);
1.8       markus    219:                EVP_DigestInit(&ctx, md);
                    220:                EVP_DigestUpdate(&ctx, blob, len);
1.39      markus    221:                EVP_DigestFinal(&ctx, retval, dgst_raw_length);
1.3       markus    222:                memset(blob, 0, len);
                    223:                xfree(blob);
1.19      jakob     224:        } else {
                    225:                fatal("key_fingerprint_raw: blob is null");
1.1       markus    226:        }
1.19      jakob     227:        return retval;
                    228: }
                    229:
1.46      deraadt   230: static char *
                    231: key_fingerprint_hex(u_char *dgst_raw, u_int dgst_raw_len)
1.19      jakob     232: {
                    233:        char *retval;
1.58      djm       234:        u_int i;
1.19      jakob     235:
1.63      djm       236:        retval = xcalloc(1, dgst_raw_len * 3 + 1);
1.36      deraadt   237:        for (i = 0; i < dgst_raw_len; i++) {
1.19      jakob     238:                char hex[4];
                    239:                snprintf(hex, sizeof(hex), "%02x:", dgst_raw[i]);
1.54      avsm      240:                strlcat(retval, hex, dgst_raw_len * 3 + 1);
1.19      jakob     241:        }
1.54      avsm      242:
                    243:        /* Remove the trailing ':' character */
1.19      jakob     244:        retval[(dgst_raw_len * 3) - 1] = '\0';
                    245:        return retval;
                    246: }
                    247:
1.46      deraadt   248: static char *
                    249: key_fingerprint_bubblebabble(u_char *dgst_raw, u_int dgst_raw_len)
1.19      jakob     250: {
                    251:        char vowels[] = { 'a', 'e', 'i', 'o', 'u', 'y' };
                    252:        char consonants[] = { 'b', 'c', 'd', 'f', 'g', 'h', 'k', 'l', 'm',
                    253:            'n', 'p', 'r', 's', 't', 'v', 'z', 'x' };
1.20      jakob     254:        u_int i, j = 0, rounds, seed = 1;
1.19      jakob     255:        char *retval;
                    256:
                    257:        rounds = (dgst_raw_len / 2) + 1;
1.63      djm       258:        retval = xcalloc((rounds * 6), sizeof(char));
1.20      jakob     259:        retval[j++] = 'x';
                    260:        for (i = 0; i < rounds; i++) {
1.19      jakob     261:                u_int idx0, idx1, idx2, idx3, idx4;
1.20      jakob     262:                if ((i + 1 < rounds) || (dgst_raw_len % 2 != 0)) {
                    263:                        idx0 = (((((u_int)(dgst_raw[2 * i])) >> 6) & 3) +
1.19      jakob     264:                            seed) % 6;
1.20      jakob     265:                        idx1 = (((u_int)(dgst_raw[2 * i])) >> 2) & 15;
                    266:                        idx2 = ((((u_int)(dgst_raw[2 * i])) & 3) +
1.19      jakob     267:                            (seed / 6)) % 6;
1.20      jakob     268:                        retval[j++] = vowels[idx0];
                    269:                        retval[j++] = consonants[idx1];
                    270:                        retval[j++] = vowels[idx2];
                    271:                        if ((i + 1) < rounds) {
                    272:                                idx3 = (((u_int)(dgst_raw[(2 * i) + 1])) >> 4) & 15;
                    273:                                idx4 = (((u_int)(dgst_raw[(2 * i) + 1]))) & 15;
                    274:                                retval[j++] = consonants[idx3];
                    275:                                retval[j++] = '-';
                    276:                                retval[j++] = consonants[idx4];
1.19      jakob     277:                                seed = ((seed * 5) +
1.20      jakob     278:                                    ((((u_int)(dgst_raw[2 * i])) * 7) +
                    279:                                    ((u_int)(dgst_raw[(2 * i) + 1])))) % 36;
1.19      jakob     280:                        }
                    281:                } else {
                    282:                        idx0 = seed % 6;
                    283:                        idx1 = 16;
                    284:                        idx2 = seed / 6;
1.20      jakob     285:                        retval[j++] = vowels[idx0];
                    286:                        retval[j++] = consonants[idx1];
                    287:                        retval[j++] = vowels[idx2];
1.19      jakob     288:                }
                    289:        }
1.20      jakob     290:        retval[j++] = 'x';
                    291:        retval[j++] = '\0';
1.19      jakob     292:        return retval;
                    293: }
                    294:
1.70      grunk     295: /*
                    296:  * Draw an ASCII-Art representing the fingerprint so human brain can
                    297:  * profit from its built-in pattern recognition ability.
                    298:  * This technique is called "random art" and can be found in some
                    299:  * scientific publications like this original paper:
                    300:  *
                    301:  * "Hash Visualization: a New Technique to improve Real-World Security",
                    302:  * Perrig A. and Song D., 1999, International Workshop on Cryptographic
                    303:  * Techniques and E-Commerce (CrypTEC '99)
                    304:  * sparrow.ece.cmu.edu/~adrian/projects/validation/validation.pdf
                    305:  *
                    306:  * The subject came up in a talk by Dan Kaminsky, too.
                    307:  *
                    308:  * If you see the picture is different, the key is different.
                    309:  * If the picture looks the same, you still know nothing.
                    310:  *
                    311:  * The algorithm used here is a worm crawling over a discrete plane,
                    312:  * leaving a trace (augmenting the field) everywhere it goes.
                    313:  * Movement is taken from dgst_raw 2bit-wise.  Bumping into walls
                    314:  * makes the respective movement vector be ignored for this turn.
                    315:  * Graphs are not unambiguous, because circles in graphs can be
                    316:  * walked in either direction.
                    317:  */
                    318: #define        FLDSIZE_Y        8
                    319: #define        FLDSIZE_X       FLDSIZE_Y * 2
                    320: static char *
                    321: key_fingerprint_randomart(u_char *dgst_raw, u_int dgst_raw_len)
                    322: {
                    323:        /*
                    324:         * Chars to be used after each other every time the worm
                    325:         * intersects with itself.  Matter of taste.
                    326:         */
                    327:        char    *augmentation_string = " .o+=*BOX@%&#/^";
                    328:        char    *retval, *p;
1.71    ! otto      329:        u_char   field[FLDSIZE_X][FLDSIZE_Y];
1.70      grunk     330:        u_int    i, b;
                    331:        int      x, y;
1.71    ! otto      332:        size_t   len = strlen(augmentation_string);
1.70      grunk     333:
                    334:        retval = xcalloc(1, (FLDSIZE_X + 3) * (FLDSIZE_Y + 2));
                    335:
                    336:        /* initialize field */
1.71    ! otto      337:        memset(field, 0, FLDSIZE_X * FLDSIZE_Y * sizeof(char));
1.70      grunk     338:        x = FLDSIZE_X / 2;
                    339:        y = FLDSIZE_Y / 2;
1.71    ! otto      340:        field[x][y] = 1;
1.70      grunk     341:
                    342:        /* process raw key */
                    343:        for (i = 0; i < dgst_raw_len; i++) {
                    344:                int input;
                    345:                /* each byte conveys four 2-bit move commands */
                    346:                input = dgst_raw[i];
                    347:                for (b = 0; b < 4; b++) {
                    348:                        /* evaluate 2 bit, rest is shifted later */
                    349:                        x += (input & 0x1) ? 1 : -1;
                    350:                        y += (input & 0x2) ? 1 : -1;
                    351:
                    352:                        /* assure we are still in bounds */
                    353:                        x = MAX(x, 0);
                    354:                        y = MAX(y, 0);
                    355:                        x = MIN(x, FLDSIZE_X - 1);
                    356:                        y = MIN(y, FLDSIZE_Y - 1);
                    357:
                    358:                        /* augment the field */
1.71    ! otto      359:                        field[x][y]++;
1.70      grunk     360:                        input = input >> 2;
                    361:                }
                    362:        }
                    363:
                    364:        /* fill in retval */
                    365:        p = retval;
                    366:
                    367:        /* output upper border */
                    368:        *p++ = '+';
                    369:        for (i = 0; i < FLDSIZE_X; i++)
                    370:                *p++ = '-';
                    371:        *p++ = '+';
                    372:        *p++ = '\n';
                    373:
                    374:        /* output content */
                    375:        for (y = 0; y < FLDSIZE_Y; y++) {
                    376:                *p++ = '|';
                    377:                for (x = 0; x < FLDSIZE_X; x++)
1.71    ! otto      378:                        *p++ = augmentation_string[MIN(field[x][y], len - 1)];
1.70      grunk     379:                *p++ = '|';
                    380:                *p++ = '\n';
                    381:        }
                    382:
                    383:        /* output lower border */
                    384:        *p++ = '+';
                    385:        for (i = 0; i < FLDSIZE_X; i++)
                    386:                *p++ = '-';
                    387:        *p++ = '+';
                    388:
                    389:        return retval;
                    390: }
                    391:
1.46      deraadt   392: char *
1.55      jakob     393: key_fingerprint(const Key *k, enum fp_type dgst_type, enum fp_rep dgst_rep)
1.19      jakob     394: {
1.23      markus    395:        char *retval = NULL;
1.19      jakob     396:        u_char *dgst_raw;
1.39      markus    397:        u_int dgst_raw_len;
1.36      deraadt   398:
1.19      jakob     399:        dgst_raw = key_fingerprint_raw(k, dgst_type, &dgst_raw_len);
                    400:        if (!dgst_raw)
1.22      markus    401:                fatal("key_fingerprint: null from key_fingerprint_raw()");
1.35      deraadt   402:        switch (dgst_rep) {
1.19      jakob     403:        case SSH_FP_HEX:
                    404:                retval = key_fingerprint_hex(dgst_raw, dgst_raw_len);
                    405:                break;
                    406:        case SSH_FP_BUBBLEBABBLE:
                    407:                retval = key_fingerprint_bubblebabble(dgst_raw, dgst_raw_len);
1.70      grunk     408:                break;
                    409:        case SSH_FP_RANDOMART:
                    410:                retval = key_fingerprint_randomart(dgst_raw, dgst_raw_len);
1.19      jakob     411:                break;
                    412:        default:
                    413:                fatal("key_fingerprint_ex: bad digest representation %d",
                    414:                    dgst_rep);
                    415:                break;
                    416:        }
                    417:        memset(dgst_raw, 0, dgst_raw_len);
                    418:        xfree(dgst_raw);
1.1       markus    419:        return retval;
                    420: }
                    421:
                    422: /*
                    423:  * Reads a multiple-precision integer in decimal from the buffer, and advances
                    424:  * the pointer.  The integer must already be initialized.  This function is
                    425:  * permitted to modify the buffer.  This leaves *cpp to point just beyond the
                    426:  * last processed (and maybe modified) character.  Note that this may modify
                    427:  * the buffer containing the number.
                    428:  */
1.27      itojun    429: static int
1.1       markus    430: read_bignum(char **cpp, BIGNUM * value)
                    431: {
                    432:        char *cp = *cpp;
                    433:        int old;
                    434:
                    435:        /* Skip any leading whitespace. */
                    436:        for (; *cp == ' ' || *cp == '\t'; cp++)
                    437:                ;
                    438:
                    439:        /* Check that it begins with a decimal digit. */
                    440:        if (*cp < '0' || *cp > '9')
                    441:                return 0;
                    442:
                    443:        /* Save starting position. */
                    444:        *cpp = cp;
                    445:
                    446:        /* Move forward until all decimal digits skipped. */
                    447:        for (; *cp >= '0' && *cp <= '9'; cp++)
                    448:                ;
                    449:
                    450:        /* Save the old terminating character, and replace it by \0. */
                    451:        old = *cp;
                    452:        *cp = 0;
                    453:
                    454:        /* Parse the number. */
                    455:        if (BN_dec2bn(&value, *cpp) == 0)
                    456:                return 0;
                    457:
                    458:        /* Restore old terminating character. */
                    459:        *cp = old;
                    460:
                    461:        /* Move beyond the number and return success. */
                    462:        *cpp = cp;
                    463:        return 1;
                    464: }
1.45      deraadt   465:
1.27      itojun    466: static int
1.1       markus    467: write_bignum(FILE *f, BIGNUM *num)
                    468: {
                    469:        char *buf = BN_bn2dec(num);
                    470:        if (buf == NULL) {
                    471:                error("write_bignum: BN_bn2dec() failed");
                    472:                return 0;
                    473:        }
                    474:        fprintf(f, " %s", buf);
1.33      markus    475:        OPENSSL_free(buf);
1.1       markus    476:        return 1;
                    477: }
1.12      markus    478:
1.32      markus    479: /* returns 1 ok, -1 error */
1.12      markus    480: int
1.3       markus    481: key_read(Key *ret, char **cpp)
1.1       markus    482: {
1.3       markus    483:        Key *k;
1.12      markus    484:        int success = -1;
                    485:        char *cp, *space;
                    486:        int len, n, type;
                    487:        u_int bits;
1.13      markus    488:        u_char *blob;
1.3       markus    489:
                    490:        cp = *cpp;
                    491:
1.35      deraadt   492:        switch (ret->type) {
1.12      markus    493:        case KEY_RSA1:
1.3       markus    494:                /* Get number of bits. */
                    495:                if (*cp < '0' || *cp > '9')
1.12      markus    496:                        return -1;      /* Bad bit count... */
1.3       markus    497:                for (bits = 0; *cp >= '0' && *cp <= '9'; cp++)
                    498:                        bits = 10 * bits + *cp - '0';
1.1       markus    499:                if (bits == 0)
1.12      markus    500:                        return -1;
1.3       markus    501:                *cpp = cp;
1.1       markus    502:                /* Get public exponent, public modulus. */
                    503:                if (!read_bignum(cpp, ret->rsa->e))
1.12      markus    504:                        return -1;
1.1       markus    505:                if (!read_bignum(cpp, ret->rsa->n))
1.12      markus    506:                        return -1;
                    507:                success = 1;
1.1       markus    508:                break;
1.12      markus    509:        case KEY_UNSPEC:
                    510:        case KEY_RSA:
1.1       markus    511:        case KEY_DSA:
1.12      markus    512:                space = strchr(cp, ' ');
                    513:                if (space == NULL) {
1.50      markus    514:                        debug3("key_read: missing whitespace");
1.12      markus    515:                        return -1;
                    516:                }
                    517:                *space = '\0';
                    518:                type = key_type_from_name(cp);
                    519:                *space = ' ';
                    520:                if (type == KEY_UNSPEC) {
1.50      markus    521:                        debug3("key_read: missing keytype");
1.12      markus    522:                        return -1;
                    523:                }
                    524:                cp = space+1;
                    525:                if (*cp == '\0') {
                    526:                        debug3("key_read: short string");
                    527:                        return -1;
                    528:                }
                    529:                if (ret->type == KEY_UNSPEC) {
                    530:                        ret->type = type;
                    531:                } else if (ret->type != type) {
                    532:                        /* is a key, but different type */
                    533:                        debug3("key_read: type mismatch");
1.32      markus    534:                        return -1;
1.12      markus    535:                }
1.3       markus    536:                len = 2*strlen(cp);
                    537:                blob = xmalloc(len);
                    538:                n = uudecode(cp, blob, len);
1.6       markus    539:                if (n < 0) {
1.7       markus    540:                        error("key_read: uudecode %s failed", cp);
1.34      markus    541:                        xfree(blob);
1.12      markus    542:                        return -1;
1.6       markus    543:                }
1.53      markus    544:                k = key_from_blob(blob, (u_int)n);
1.34      markus    545:                xfree(blob);
1.7       markus    546:                if (k == NULL) {
1.12      markus    547:                        error("key_read: key_from_blob %s failed", cp);
                    548:                        return -1;
1.7       markus    549:                }
1.12      markus    550:                if (k->type != type) {
                    551:                        error("key_read: type mismatch: encoding error");
                    552:                        key_free(k);
                    553:                        return -1;
                    554:                }
                    555: /*XXXX*/
                    556:                if (ret->type == KEY_RSA) {
                    557:                        if (ret->rsa != NULL)
                    558:                                RSA_free(ret->rsa);
                    559:                        ret->rsa = k->rsa;
                    560:                        k->rsa = NULL;
                    561:                        success = 1;
                    562: #ifdef DEBUG_PK
                    563:                        RSA_print_fp(stderr, ret->rsa, 8);
                    564: #endif
                    565:                } else {
                    566:                        if (ret->dsa != NULL)
                    567:                                DSA_free(ret->dsa);
                    568:                        ret->dsa = k->dsa;
                    569:                        k->dsa = NULL;
                    570:                        success = 1;
                    571: #ifdef DEBUG_PK
                    572:                        DSA_print_fp(stderr, ret->dsa, 8);
                    573: #endif
                    574:                }
                    575: /*XXXX*/
1.34      markus    576:                key_free(k);
1.12      markus    577:                if (success != 1)
                    578:                        break;
1.7       markus    579:                /* advance cp: skip whitespace and data */
                    580:                while (*cp == ' ' || *cp == '\t')
                    581:                        cp++;
                    582:                while (*cp != '\0' && *cp != ' ' && *cp != '\t')
                    583:                        cp++;
                    584:                *cpp = cp;
1.1       markus    585:                break;
                    586:        default:
1.3       markus    587:                fatal("key_read: bad key type: %d", ret->type);
1.1       markus    588:                break;
                    589:        }
1.12      markus    590:        return success;
1.1       markus    591: }
1.45      deraadt   592:
1.1       markus    593: int
1.55      jakob     594: key_write(const Key *key, FILE *f)
1.1       markus    595: {
1.40      markus    596:        int n, success = 0;
                    597:        u_int len, bits = 0;
1.49      markus    598:        u_char *blob;
                    599:        char *uu;
1.1       markus    600:
1.12      markus    601:        if (key->type == KEY_RSA1 && key->rsa != NULL) {
1.1       markus    602:                /* size of modulus 'n' */
                    603:                bits = BN_num_bits(key->rsa->n);
                    604:                fprintf(f, "%u", bits);
                    605:                if (write_bignum(f, key->rsa->e) &&
                    606:                    write_bignum(f, key->rsa->n)) {
                    607:                        success = 1;
                    608:                } else {
                    609:                        error("key_write: failed for RSA key");
                    610:                }
1.12      markus    611:        } else if ((key->type == KEY_DSA && key->dsa != NULL) ||
                    612:            (key->type == KEY_RSA && key->rsa != NULL)) {
                    613:                key_to_blob(key, &blob, &len);
1.3       markus    614:                uu = xmalloc(2*len);
1.5       markus    615:                n = uuencode(blob, len, uu, 2*len);
                    616:                if (n > 0) {
1.12      markus    617:                        fprintf(f, "%s %s", key_ssh_name(key), uu);
1.5       markus    618:                        success = 1;
                    619:                }
1.3       markus    620:                xfree(blob);
                    621:                xfree(uu);
1.1       markus    622:        }
                    623:        return success;
                    624: }
1.45      deraadt   625:
1.55      jakob     626: const char *
                    627: key_type(const Key *k)
1.4       markus    628: {
                    629:        switch (k->type) {
1.12      markus    630:        case KEY_RSA1:
                    631:                return "RSA1";
1.4       markus    632:        case KEY_RSA:
                    633:                return "RSA";
                    634:        case KEY_DSA:
                    635:                return "DSA";
                    636:        }
                    637:        return "unknown";
1.10      markus    638: }
1.45      deraadt   639:
1.55      jakob     640: const char *
                    641: key_ssh_name(const Key *k)
1.12      markus    642: {
                    643:        switch (k->type) {
                    644:        case KEY_RSA:
                    645:                return "ssh-rsa";
                    646:        case KEY_DSA:
                    647:                return "ssh-dss";
                    648:        }
                    649:        return "ssh-unknown";
                    650: }
1.45      deraadt   651:
1.12      markus    652: u_int
1.55      jakob     653: key_size(const Key *k)
1.35      deraadt   654: {
1.10      markus    655:        switch (k->type) {
1.12      markus    656:        case KEY_RSA1:
1.10      markus    657:        case KEY_RSA:
                    658:                return BN_num_bits(k->rsa->n);
                    659:        case KEY_DSA:
                    660:                return BN_num_bits(k->dsa->p);
                    661:        }
                    662:        return 0;
1.12      markus    663: }
                    664:
1.27      itojun    665: static RSA *
1.13      markus    666: rsa_generate_private_key(u_int bits)
1.12      markus    667: {
1.17      stevesk   668:        RSA *private;
1.61      deraadt   669:
1.17      stevesk   670:        private = RSA_generate_key(bits, 35, NULL, NULL);
                    671:        if (private == NULL)
                    672:                fatal("rsa_generate_private_key: key generation failed.");
                    673:        return private;
1.12      markus    674: }
                    675:
1.27      itojun    676: static DSA*
1.13      markus    677: dsa_generate_private_key(u_int bits)
1.12      markus    678: {
                    679:        DSA *private = DSA_generate_parameters(bits, NULL, 0, NULL, NULL, NULL, NULL);
1.61      deraadt   680:
1.12      markus    681:        if (private == NULL)
                    682:                fatal("dsa_generate_private_key: DSA_generate_parameters failed");
                    683:        if (!DSA_generate_key(private))
1.17      stevesk   684:                fatal("dsa_generate_private_key: DSA_generate_key failed.");
                    685:        if (private == NULL)
                    686:                fatal("dsa_generate_private_key: NULL.");
1.12      markus    687:        return private;
                    688: }
                    689:
                    690: Key *
1.13      markus    691: key_generate(int type, u_int bits)
1.12      markus    692: {
                    693:        Key *k = key_new(KEY_UNSPEC);
                    694:        switch (type) {
1.17      stevesk   695:        case KEY_DSA:
1.12      markus    696:                k->dsa = dsa_generate_private_key(bits);
                    697:                break;
                    698:        case KEY_RSA:
                    699:        case KEY_RSA1:
                    700:                k->rsa = rsa_generate_private_key(bits);
                    701:                break;
                    702:        default:
1.17      stevesk   703:                fatal("key_generate: unknown type %d", type);
1.12      markus    704:        }
1.17      stevesk   705:        k->type = type;
1.12      markus    706:        return k;
                    707: }
                    708:
                    709: Key *
1.55      jakob     710: key_from_private(const Key *k)
1.12      markus    711: {
                    712:        Key *n = NULL;
                    713:        switch (k->type) {
1.17      stevesk   714:        case KEY_DSA:
1.12      markus    715:                n = key_new(k->type);
1.68      markus    716:                if ((BN_copy(n->dsa->p, k->dsa->p) == NULL) ||
                    717:                    (BN_copy(n->dsa->q, k->dsa->q) == NULL) ||
                    718:                    (BN_copy(n->dsa->g, k->dsa->g) == NULL) ||
                    719:                    (BN_copy(n->dsa->pub_key, k->dsa->pub_key) == NULL))
                    720:                        fatal("key_from_private: BN_copy failed");
1.12      markus    721:                break;
                    722:        case KEY_RSA:
                    723:        case KEY_RSA1:
                    724:                n = key_new(k->type);
1.68      markus    725:                if ((BN_copy(n->rsa->n, k->rsa->n) == NULL) ||
                    726:                    (BN_copy(n->rsa->e, k->rsa->e) == NULL))
                    727:                        fatal("key_from_private: BN_copy failed");
1.12      markus    728:                break;
                    729:        default:
1.17      stevesk   730:                fatal("key_from_private: unknown type %d", k->type);
1.12      markus    731:                break;
                    732:        }
                    733:        return n;
                    734: }
                    735:
                    736: int
                    737: key_type_from_name(char *name)
                    738: {
1.35      deraadt   739:        if (strcmp(name, "rsa1") == 0) {
1.12      markus    740:                return KEY_RSA1;
1.35      deraadt   741:        } else if (strcmp(name, "rsa") == 0) {
1.12      markus    742:                return KEY_RSA;
1.35      deraadt   743:        } else if (strcmp(name, "dsa") == 0) {
1.12      markus    744:                return KEY_DSA;
1.35      deraadt   745:        } else if (strcmp(name, "ssh-rsa") == 0) {
1.12      markus    746:                return KEY_RSA;
1.35      deraadt   747:        } else if (strcmp(name, "ssh-dss") == 0) {
1.12      markus    748:                return KEY_DSA;
                    749:        }
1.18      markus    750:        debug2("key_type_from_name: unknown key type '%s'", name);
1.12      markus    751:        return KEY_UNSPEC;
1.25      markus    752: }
                    753:
                    754: int
                    755: key_names_valid2(const char *names)
                    756: {
                    757:        char *s, *cp, *p;
                    758:
                    759:        if (names == NULL || strcmp(names, "") == 0)
                    760:                return 0;
                    761:        s = cp = xstrdup(names);
                    762:        for ((p = strsep(&cp, ",")); p && *p != '\0';
1.36      deraadt   763:            (p = strsep(&cp, ","))) {
1.25      markus    764:                switch (key_type_from_name(p)) {
                    765:                case KEY_RSA1:
                    766:                case KEY_UNSPEC:
                    767:                        xfree(s);
                    768:                        return 0;
                    769:                }
                    770:        }
                    771:        debug3("key names ok: [%s]", names);
                    772:        xfree(s);
                    773:        return 1;
1.12      markus    774: }
                    775:
                    776: Key *
1.55      jakob     777: key_from_blob(const u_char *blob, u_int blen)
1.12      markus    778: {
                    779:        Buffer b;
                    780:        int rlen, type;
1.57      djm       781:        char *ktype = NULL;
1.12      markus    782:        Key *key = NULL;
                    783:
                    784: #ifdef DEBUG_PK
                    785:        dump_base64(stderr, blob, blen);
                    786: #endif
                    787:        buffer_init(&b);
                    788:        buffer_append(&b, blob, blen);
1.57      djm       789:        if ((ktype = buffer_get_string_ret(&b, NULL)) == NULL) {
                    790:                error("key_from_blob: can't read key type");
                    791:                goto out;
                    792:        }
                    793:
1.12      markus    794:        type = key_type_from_name(ktype);
                    795:
1.35      deraadt   796:        switch (type) {
1.12      markus    797:        case KEY_RSA:
                    798:                key = key_new(type);
1.57      djm       799:                if (buffer_get_bignum2_ret(&b, key->rsa->e) == -1 ||
                    800:                    buffer_get_bignum2_ret(&b, key->rsa->n) == -1) {
                    801:                        error("key_from_blob: can't read rsa key");
                    802:                        key_free(key);
                    803:                        key = NULL;
                    804:                        goto out;
                    805:                }
1.12      markus    806: #ifdef DEBUG_PK
                    807:                RSA_print_fp(stderr, key->rsa, 8);
                    808: #endif
                    809:                break;
                    810:        case KEY_DSA:
                    811:                key = key_new(type);
1.57      djm       812:                if (buffer_get_bignum2_ret(&b, key->dsa->p) == -1 ||
                    813:                    buffer_get_bignum2_ret(&b, key->dsa->q) == -1 ||
                    814:                    buffer_get_bignum2_ret(&b, key->dsa->g) == -1 ||
                    815:                    buffer_get_bignum2_ret(&b, key->dsa->pub_key) == -1) {
                    816:                        error("key_from_blob: can't read dsa key");
                    817:                        key_free(key);
                    818:                        key = NULL;
                    819:                        goto out;
                    820:                }
1.12      markus    821: #ifdef DEBUG_PK
                    822:                DSA_print_fp(stderr, key->dsa, 8);
                    823: #endif
                    824:                break;
                    825:        case KEY_UNSPEC:
                    826:                key = key_new(type);
                    827:                break;
                    828:        default:
                    829:                error("key_from_blob: cannot handle type %s", ktype);
1.57      djm       830:                goto out;
1.12      markus    831:        }
                    832:        rlen = buffer_len(&b);
                    833:        if (key != NULL && rlen != 0)
                    834:                error("key_from_blob: remaining bytes in key blob %d", rlen);
1.57      djm       835:  out:
                    836:        if (ktype != NULL)
                    837:                xfree(ktype);
1.12      markus    838:        buffer_free(&b);
                    839:        return key;
                    840: }
                    841:
                    842: int
1.55      jakob     843: key_to_blob(const Key *key, u_char **blobp, u_int *lenp)
1.12      markus    844: {
                    845:        Buffer b;
                    846:        int len;
                    847:
                    848:        if (key == NULL) {
                    849:                error("key_to_blob: key == NULL");
                    850:                return 0;
                    851:        }
                    852:        buffer_init(&b);
1.35      deraadt   853:        switch (key->type) {
1.12      markus    854:        case KEY_DSA:
                    855:                buffer_put_cstring(&b, key_ssh_name(key));
                    856:                buffer_put_bignum2(&b, key->dsa->p);
                    857:                buffer_put_bignum2(&b, key->dsa->q);
                    858:                buffer_put_bignum2(&b, key->dsa->g);
                    859:                buffer_put_bignum2(&b, key->dsa->pub_key);
                    860:                break;
                    861:        case KEY_RSA:
                    862:                buffer_put_cstring(&b, key_ssh_name(key));
1.14      markus    863:                buffer_put_bignum2(&b, key->rsa->e);
1.12      markus    864:                buffer_put_bignum2(&b, key->rsa->n);
                    865:                break;
                    866:        default:
1.31      markus    867:                error("key_to_blob: unsupported key type %d", key->type);
                    868:                buffer_free(&b);
                    869:                return 0;
1.12      markus    870:        }
                    871:        len = buffer_len(&b);
1.48      markus    872:        if (lenp != NULL)
                    873:                *lenp = len;
                    874:        if (blobp != NULL) {
                    875:                *blobp = xmalloc(len);
                    876:                memcpy(*blobp, buffer_ptr(&b), len);
                    877:        }
1.12      markus    878:        memset(buffer_ptr(&b), 0, len);
                    879:        buffer_free(&b);
                    880:        return len;
                    881: }
                    882:
                    883: int
                    884: key_sign(
1.55      jakob     885:     const Key *key,
1.40      markus    886:     u_char **sigp, u_int *lenp,
1.55      jakob     887:     const u_char *data, u_int datalen)
1.12      markus    888: {
1.35      deraadt   889:        switch (key->type) {
1.12      markus    890:        case KEY_DSA:
                    891:                return ssh_dss_sign(key, sigp, lenp, data, datalen);
                    892:        case KEY_RSA:
                    893:                return ssh_rsa_sign(key, sigp, lenp, data, datalen);
                    894:        default:
1.56      markus    895:                error("key_sign: invalid key type %d", key->type);
1.12      markus    896:                return -1;
                    897:        }
                    898: }
                    899:
1.44      markus    900: /*
                    901:  * key_verify returns 1 for a correct signature, 0 for an incorrect signature
                    902:  * and -1 on error.
                    903:  */
1.12      markus    904: int
                    905: key_verify(
1.55      jakob     906:     const Key *key,
                    907:     const u_char *signature, u_int signaturelen,
                    908:     const u_char *data, u_int datalen)
1.12      markus    909: {
1.26      markus    910:        if (signaturelen == 0)
                    911:                return -1;
                    912:
1.35      deraadt   913:        switch (key->type) {
1.12      markus    914:        case KEY_DSA:
                    915:                return ssh_dss_verify(key, signature, signaturelen, data, datalen);
                    916:        case KEY_RSA:
                    917:                return ssh_rsa_verify(key, signature, signaturelen, data, datalen);
                    918:        default:
1.56      markus    919:                error("key_verify: invalid key type %d", key->type);
1.12      markus    920:                return -1;
                    921:        }
1.42      markus    922: }
                    923:
                    924: /* Converts a private to a public key */
                    925: Key *
1.55      jakob     926: key_demote(const Key *k)
1.42      markus    927: {
                    928:        Key *pk;
1.43      markus    929:
1.63      djm       930:        pk = xcalloc(1, sizeof(*pk));
1.42      markus    931:        pk->type = k->type;
                    932:        pk->flags = k->flags;
                    933:        pk->dsa = NULL;
                    934:        pk->rsa = NULL;
                    935:
                    936:        switch (k->type) {
                    937:        case KEY_RSA1:
                    938:        case KEY_RSA:
                    939:                if ((pk->rsa = RSA_new()) == NULL)
                    940:                        fatal("key_demote: RSA_new failed");
                    941:                if ((pk->rsa->e = BN_dup(k->rsa->e)) == NULL)
                    942:                        fatal("key_demote: BN_dup failed");
                    943:                if ((pk->rsa->n = BN_dup(k->rsa->n)) == NULL)
                    944:                        fatal("key_demote: BN_dup failed");
                    945:                break;
                    946:        case KEY_DSA:
                    947:                if ((pk->dsa = DSA_new()) == NULL)
                    948:                        fatal("key_demote: DSA_new failed");
                    949:                if ((pk->dsa->p = BN_dup(k->dsa->p)) == NULL)
                    950:                        fatal("key_demote: BN_dup failed");
                    951:                if ((pk->dsa->q = BN_dup(k->dsa->q)) == NULL)
                    952:                        fatal("key_demote: BN_dup failed");
                    953:                if ((pk->dsa->g = BN_dup(k->dsa->g)) == NULL)
                    954:                        fatal("key_demote: BN_dup failed");
                    955:                if ((pk->dsa->pub_key = BN_dup(k->dsa->pub_key)) == NULL)
                    956:                        fatal("key_demote: BN_dup failed");
                    957:                break;
                    958:        default:
                    959:                fatal("key_free: bad key type %d", k->type);
                    960:                break;
                    961:        }
                    962:
                    963:        return (pk);
1.4       markus    964: }