[BACK]Return to moduli.c CVS log [TXT][DIR] Up to [local] / src / usr.bin / ssh

Annotation of src/usr.bin/ssh/moduli.c, Revision 1.22

1.22    ! djm         1: /* $OpenBSD: moduli.c,v 1.21 2008/06/26 09:19:40 djm Exp $ */
1.1       djm         2: /*
                      3:  * Copyright 1994 Phil Karn <karn@qualcomm.com>
                      4:  * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com>
                      5:  * Copyright 2000 Niels Provos <provos@citi.umich.edu>
                      6:  * All rights reserved.
                      7:  *
                      8:  * Redistribution and use in source and binary forms, with or without
                      9:  * modification, are permitted provided that the following conditions
                     10:  * are met:
                     11:  * 1. Redistributions of source code must retain the above copyright
                     12:  *    notice, this list of conditions and the following disclaimer.
                     13:  * 2. Redistributions in binary form must reproduce the above copyright
                     14:  *    notice, this list of conditions and the following disclaimer in the
                     15:  *    documentation and/or other materials provided with the distribution.
                     16:  *
                     17:  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
                     18:  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
                     19:  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
                     20:  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
                     21:  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
                     22:  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
                     23:  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
                     24:  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
                     25:  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
                     26:  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
                     27:  */
                     28:
                     29: /*
                     30:  * Two-step process to generate safe primes for DHGEX
                     31:  *
                     32:  *  Sieve candidates for "safe" primes,
                     33:  *  suitable for use as Diffie-Hellman moduli;
                     34:  *  that is, where q = (p-1)/2 is also prime.
                     35:  *
                     36:  * First step: generate candidate primes (memory intensive)
                     37:  * Second step: test primes' safety (processor intensive)
                     38:  */
                     39:
1.14      stevesk    40: #include <sys/types.h>
                     41:
                     42: #include <openssl/bn.h>
1.21      djm        43: #include <openssl/dh.h>
1.14      stevesk    44:
1.17      stevesk    45: #include <stdio.h>
1.16      stevesk    46: #include <stdlib.h>
1.15      stevesk    47: #include <string.h>
1.18      deraadt    48: #include <stdarg.h>
1.14      stevesk    49: #include <time.h>
                     50:
1.1       djm        51: #include "xmalloc.h"
1.21      djm        52: #include "dh.h"
1.1       djm        53: #include "log.h"
                     54:
                     55: /*
                     56:  * File output defines
                     57:  */
                     58:
                     59: /* need line long enough for largest moduli plus headers */
1.9       deraadt    60: #define QLINESIZE              (100+8192)
1.1       djm        61:
1.5       djm        62: /*
                     63:  * Size: decimal.
1.1       djm        64:  * Specifies the number of the most significant bit (0 to M).
1.5       djm        65:  * WARNING: internally, usually 1 to N.
1.1       djm        66:  */
1.9       deraadt    67: #define QSIZE_MINIMUM          (511)
1.1       djm        68:
                     69: /*
                     70:  * Prime sieving defines
                     71:  */
                     72:
                     73: /* Constant: assuming 8 bit bytes and 32 bit words */
1.9       deraadt    74: #define SHIFT_BIT      (3)
                     75: #define SHIFT_BYTE     (2)
                     76: #define SHIFT_WORD     (SHIFT_BIT+SHIFT_BYTE)
                     77: #define SHIFT_MEGABYTE (20)
                     78: #define SHIFT_MEGAWORD (SHIFT_MEGABYTE-SHIFT_BYTE)
1.1       djm        79:
                     80: /*
1.7       djm        81:  * Using virtual memory can cause thrashing.  This should be the largest
                     82:  * number that is supported without a large amount of disk activity --
                     83:  * that would increase the run time from hours to days or weeks!
                     84:  */
1.9       deraadt    85: #define LARGE_MINIMUM  (8UL)   /* megabytes */
1.7       djm        86:
                     87: /*
                     88:  * Do not increase this number beyond the unsigned integer bit size.
                     89:  * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits).
                     90:  */
1.9       deraadt    91: #define LARGE_MAXIMUM  (127UL) /* megabytes */
1.7       djm        92:
                     93: /*
1.1       djm        94:  * Constant: when used with 32-bit integers, the largest sieve prime
                     95:  * has to be less than 2**32.
                     96:  */
1.9       deraadt    97: #define SMALL_MAXIMUM  (0xffffffffUL)
1.1       djm        98:
                     99: /* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
1.9       deraadt   100: #define TINY_NUMBER    (1UL<<16)
1.1       djm       101:
                    102: /* Ensure enough bit space for testing 2*q. */
1.12      djm       103: #define TEST_MAXIMUM   (1UL<<16)
                    104: #define TEST_MINIMUM   (QSIZE_MINIMUM + 1)
                    105: /* real TEST_MINIMUM   (1UL << (SHIFT_WORD - TEST_POWER)) */
                    106: #define TEST_POWER     (3)     /* 2**n, n < SHIFT_WORD */
1.1       djm       107:
                    108: /* bit operations on 32-bit words */
1.12      djm       109: #define BIT_CLEAR(a,n) ((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
                    110: #define BIT_SET(a,n)   ((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
                    111: #define BIT_TEST(a,n)  ((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))
1.1       djm       112:
                    113: /*
                    114:  * Prime testing defines
                    115:  */
                    116:
1.7       djm       117: /* Minimum number of primality tests to perform */
1.12      djm       118: #define TRIAL_MINIMUM  (4)
1.7       djm       119:
1.1       djm       120: /*
                    121:  * Sieving data (XXX - move to struct)
                    122:  */
                    123:
                    124: /* sieve 2**16 */
                    125: static u_int32_t *TinySieve, tinybits;
                    126:
                    127: /* sieve 2**30 in 2**16 parts */
                    128: static u_int32_t *SmallSieve, smallbits, smallbase;
                    129:
                    130: /* sieve relative to the initial value */
                    131: static u_int32_t *LargeSieve, largewords, largetries, largenumbers;
                    132: static u_int32_t largebits, largememory;       /* megabytes */
                    133: static BIGNUM *largebase;
                    134:
1.11      avsm      135: int gen_candidates(FILE *, u_int32_t, u_int32_t, BIGNUM *);
1.8       markus    136: int prime_test(FILE *, FILE *, u_int32_t, u_int32_t);
1.1       djm       137:
                    138: /*
                    139:  * print moduli out in consistent form,
                    140:  */
                    141: static int
                    142: qfileout(FILE * ofile, u_int32_t otype, u_int32_t otests, u_int32_t otries,
                    143:     u_int32_t osize, u_int32_t ogenerator, BIGNUM * omodulus)
                    144: {
                    145:        struct tm *gtm;
                    146:        time_t time_now;
                    147:        int res;
                    148:
                    149:        time(&time_now);
                    150:        gtm = gmtime(&time_now);
1.2       djm       151:
1.1       djm       152:        res = fprintf(ofile, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
                    153:            gtm->tm_year + 1900, gtm->tm_mon + 1, gtm->tm_mday,
                    154:            gtm->tm_hour, gtm->tm_min, gtm->tm_sec,
                    155:            otype, otests, otries, osize, ogenerator);
                    156:
                    157:        if (res < 0)
                    158:                return (-1);
                    159:
                    160:        if (BN_print_fp(ofile, omodulus) < 1)
                    161:                return (-1);
                    162:
                    163:        res = fprintf(ofile, "\n");
                    164:        fflush(ofile);
                    165:
                    166:        return (res > 0 ? 0 : -1);
                    167: }
                    168:
                    169:
                    170: /*
                    171:  ** Sieve p's and q's with small factors
                    172:  */
                    173: static void
                    174: sieve_large(u_int32_t s)
                    175: {
                    176:        u_int32_t r, u;
                    177:
1.5       djm       178:        debug3("sieve_large %u", s);
1.1       djm       179:        largetries++;
                    180:        /* r = largebase mod s */
                    181:        r = BN_mod_word(largebase, s);
                    182:        if (r == 0)
                    183:                u = 0; /* s divides into largebase exactly */
                    184:        else
                    185:                u = s - r; /* largebase+u is first entry divisible by s */
                    186:
                    187:        if (u < largebits * 2) {
                    188:                /*
                    189:                 * The sieve omits p's and q's divisible by 2, so ensure that
                    190:                 * largebase+u is odd. Then, step through the sieve in
                    191:                 * increments of 2*s
                    192:                 */
                    193:                if (u & 0x1)
                    194:                        u += s; /* Make largebase+u odd, and u even */
                    195:
                    196:                /* Mark all multiples of 2*s */
                    197:                for (u /= 2; u < largebits; u += s)
                    198:                        BIT_SET(LargeSieve, u);
                    199:        }
                    200:
                    201:        /* r = p mod s */
                    202:        r = (2 * r + 1) % s;
                    203:        if (r == 0)
                    204:                u = 0; /* s divides p exactly */
                    205:        else
                    206:                u = s - r; /* p+u is first entry divisible by s */
                    207:
                    208:        if (u < largebits * 4) {
                    209:                /*
                    210:                 * The sieve omits p's divisible by 4, so ensure that
                    211:                 * largebase+u is not. Then, step through the sieve in
                    212:                 * increments of 4*s
                    213:                 */
                    214:                while (u & 0x3) {
                    215:                        if (SMALL_MAXIMUM - u < s)
                    216:                                return;
                    217:                        u += s;
                    218:                }
                    219:
                    220:                /* Mark all multiples of 4*s */
                    221:                for (u /= 4; u < largebits; u += s)
                    222:                        BIT_SET(LargeSieve, u);
                    223:        }
                    224: }
                    225:
                    226: /*
1.6       djm       227:  * list candidates for Sophie-Germain primes (where q = (p-1)/2)
1.1       djm       228:  * to standard output.
                    229:  * The list is checked against small known primes (less than 2**30).
                    230:  */
                    231: int
1.11      avsm      232: gen_candidates(FILE *out, u_int32_t memory, u_int32_t power, BIGNUM *start)
1.1       djm       233: {
                    234:        BIGNUM *q;
                    235:        u_int32_t j, r, s, t;
                    236:        u_int32_t smallwords = TINY_NUMBER >> 6;
                    237:        u_int32_t tinywords = TINY_NUMBER >> 6;
                    238:        time_t time_start, time_stop;
1.11      avsm      239:        u_int32_t i;
                    240:        int ret = 0;
1.1       djm       241:
                    242:        largememory = memory;
                    243:
1.7       djm       244:        if (memory != 0 &&
1.12      djm       245:            (memory < LARGE_MINIMUM || memory > LARGE_MAXIMUM)) {
1.7       djm       246:                error("Invalid memory amount (min %ld, max %ld)",
                    247:                    LARGE_MINIMUM, LARGE_MAXIMUM);
                    248:                return (-1);
                    249:        }
                    250:
1.1       djm       251:        /*
1.2       djm       252:         * Set power to the length in bits of the prime to be generated.
                    253:         * This is changed to 1 less than the desired safe prime moduli p.
                    254:         */
1.1       djm       255:        if (power > TEST_MAXIMUM) {
                    256:                error("Too many bits: %u > %lu", power, TEST_MAXIMUM);
                    257:                return (-1);
                    258:        } else if (power < TEST_MINIMUM) {
                    259:                error("Too few bits: %u < %u", power, TEST_MINIMUM);
                    260:                return (-1);
                    261:        }
                    262:        power--; /* decrement before squaring */
                    263:
                    264:        /*
1.2       djm       265:         * The density of ordinary primes is on the order of 1/bits, so the
                    266:         * density of safe primes should be about (1/bits)**2. Set test range
                    267:         * to something well above bits**2 to be reasonably sure (but not
                    268:         * guaranteed) of catching at least one safe prime.
1.1       djm       269:         */
                    270:        largewords = ((power * power) >> (SHIFT_WORD - TEST_POWER));
                    271:
                    272:        /*
1.2       djm       273:         * Need idea of how much memory is available. We don't have to use all
                    274:         * of it.
1.1       djm       275:         */
                    276:        if (largememory > LARGE_MAXIMUM) {
                    277:                logit("Limited memory: %u MB; limit %lu MB",
                    278:                    largememory, LARGE_MAXIMUM);
                    279:                largememory = LARGE_MAXIMUM;
                    280:        }
                    281:
                    282:        if (largewords <= (largememory << SHIFT_MEGAWORD)) {
                    283:                logit("Increased memory: %u MB; need %u bytes",
                    284:                    largememory, (largewords << SHIFT_BYTE));
                    285:                largewords = (largememory << SHIFT_MEGAWORD);
                    286:        } else if (largememory > 0) {
                    287:                logit("Decreased memory: %u MB; want %u bytes",
                    288:                    largememory, (largewords << SHIFT_BYTE));
                    289:                largewords = (largememory << SHIFT_MEGAWORD);
                    290:        }
                    291:
1.13      djm       292:        TinySieve = xcalloc(tinywords, sizeof(u_int32_t));
1.1       djm       293:        tinybits = tinywords << SHIFT_WORD;
                    294:
1.13      djm       295:        SmallSieve = xcalloc(smallwords, sizeof(u_int32_t));
1.1       djm       296:        smallbits = smallwords << SHIFT_WORD;
                    297:
                    298:        /*
                    299:         * dynamically determine available memory
                    300:         */
                    301:        while ((LargeSieve = calloc(largewords, sizeof(u_int32_t))) == NULL)
                    302:                largewords -= (1L << (SHIFT_MEGAWORD - 2)); /* 1/4 MB chunks */
                    303:
                    304:        largebits = largewords << SHIFT_WORD;
                    305:        largenumbers = largebits * 2;   /* even numbers excluded */
                    306:
                    307:        /* validation check: count the number of primes tried */
                    308:        largetries = 0;
1.19      markus    309:        if ((q = BN_new()) == NULL)
                    310:                fatal("BN_new failed");
1.1       djm       311:
                    312:        /*
1.2       djm       313:         * Generate random starting point for subprime search, or use
                    314:         * specified parameter.
1.1       djm       315:         */
1.19      markus    316:        if ((largebase = BN_new()) == NULL)
                    317:                fatal("BN_new failed");
                    318:        if (start == NULL) {
                    319:                if (BN_rand(largebase, power, 1, 1) == 0)
                    320:                        fatal("BN_rand failed");
                    321:        } else {
                    322:                if (BN_copy(largebase, start) == NULL)
                    323:                        fatal("BN_copy: failed");
                    324:        }
1.1       djm       325:
                    326:        /* ensure odd */
1.19      markus    327:        if (BN_set_bit(largebase, 0) == 0)
                    328:                fatal("BN_set_bit: failed");
1.1       djm       329:
                    330:        time(&time_start);
                    331:
1.2       djm       332:        logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start),
1.1       djm       333:            largenumbers, power);
                    334:        debug2("start point: 0x%s", BN_bn2hex(largebase));
                    335:
                    336:        /*
1.2       djm       337:         * TinySieve
                    338:         */
1.1       djm       339:        for (i = 0; i < tinybits; i++) {
                    340:                if (BIT_TEST(TinySieve, i))
                    341:                        continue; /* 2*i+3 is composite */
                    342:
                    343:                /* The next tiny prime */
                    344:                t = 2 * i + 3;
                    345:
                    346:                /* Mark all multiples of t */
                    347:                for (j = i + t; j < tinybits; j += t)
                    348:                        BIT_SET(TinySieve, j);
                    349:
                    350:                sieve_large(t);
                    351:        }
                    352:
                    353:        /*
1.2       djm       354:         * Start the small block search at the next possible prime. To avoid
                    355:         * fencepost errors, the last pass is skipped.
                    356:         */
1.1       djm       357:        for (smallbase = TINY_NUMBER + 3;
1.12      djm       358:            smallbase < (SMALL_MAXIMUM - TINY_NUMBER);
                    359:            smallbase += TINY_NUMBER) {
1.1       djm       360:                for (i = 0; i < tinybits; i++) {
                    361:                        if (BIT_TEST(TinySieve, i))
                    362:                                continue; /* 2*i+3 is composite */
                    363:
                    364:                        /* The next tiny prime */
                    365:                        t = 2 * i + 3;
                    366:                        r = smallbase % t;
                    367:
                    368:                        if (r == 0) {
                    369:                                s = 0; /* t divides into smallbase exactly */
                    370:                        } else {
                    371:                                /* smallbase+s is first entry divisible by t */
                    372:                                s = t - r;
                    373:                        }
                    374:
                    375:                        /*
                    376:                         * The sieve omits even numbers, so ensure that
                    377:                         * smallbase+s is odd. Then, step through the sieve
                    378:                         * in increments of 2*t
                    379:                         */
                    380:                        if (s & 1)
                    381:                                s += t; /* Make smallbase+s odd, and s even */
                    382:
                    383:                        /* Mark all multiples of 2*t */
                    384:                        for (s /= 2; s < smallbits; s += t)
                    385:                                BIT_SET(SmallSieve, s);
                    386:                }
                    387:
                    388:                /*
1.2       djm       389:                 * SmallSieve
                    390:                 */
1.1       djm       391:                for (i = 0; i < smallbits; i++) {
                    392:                        if (BIT_TEST(SmallSieve, i))
                    393:                                continue; /* 2*i+smallbase is composite */
                    394:
                    395:                        /* The next small prime */
                    396:                        sieve_large((2 * i) + smallbase);
                    397:                }
                    398:
                    399:                memset(SmallSieve, 0, smallwords << SHIFT_BYTE);
                    400:        }
                    401:
                    402:        time(&time_stop);
                    403:
                    404:        logit("%.24s Sieved with %u small primes in %ld seconds",
                    405:            ctime(&time_stop), largetries, (long) (time_stop - time_start));
                    406:
                    407:        for (j = r = 0; j < largebits; j++) {
                    408:                if (BIT_TEST(LargeSieve, j))
                    409:                        continue; /* Definitely composite, skip */
                    410:
                    411:                debug2("test q = largebase+%u", 2 * j);
1.19      markus    412:                if (BN_set_word(q, 2 * j) == 0)
                    413:                        fatal("BN_set_word failed");
                    414:                if (BN_add(q, q, largebase) == 0)
                    415:                        fatal("BN_add failed");
1.21      djm       416:                if (qfileout(out, MODULI_TYPE_SOPHIE_GERMAIN,
                    417:                    MODULI_TESTS_SIEVE, largetries,
                    418:                    (power - 1) /* MSB */, (0), q) == -1) {
1.1       djm       419:                        ret = -1;
                    420:                        break;
                    421:                }
                    422:
                    423:                r++; /* count q */
                    424:        }
                    425:
                    426:        time(&time_stop);
                    427:
                    428:        xfree(LargeSieve);
                    429:        xfree(SmallSieve);
                    430:        xfree(TinySieve);
                    431:
                    432:        logit("%.24s Found %u candidates", ctime(&time_stop), r);
                    433:
                    434:        return (ret);
                    435: }
                    436:
                    437: /*
                    438:  * perform a Miller-Rabin primality test
                    439:  * on the list of candidates
                    440:  * (checking both q and p)
                    441:  * The result is a list of so-call "safe" primes
                    442:  */
                    443: int
1.7       djm       444: prime_test(FILE *in, FILE *out, u_int32_t trials, u_int32_t generator_wanted)
1.1       djm       445: {
                    446:        BIGNUM *q, *p, *a;
                    447:        BN_CTX *ctx;
                    448:        char *cp, *lp;
                    449:        u_int32_t count_in = 0, count_out = 0, count_possible = 0;
                    450:        u_int32_t generator_known, in_tests, in_tries, in_type, in_size;
                    451:        time_t time_start, time_stop;
                    452:        int res;
1.7       djm       453:
                    454:        if (trials < TRIAL_MINIMUM) {
                    455:                error("Minimum primality trials is %d", TRIAL_MINIMUM);
                    456:                return (-1);
                    457:        }
1.1       djm       458:
                    459:        time(&time_start);
                    460:
1.19      markus    461:        if ((p = BN_new()) == NULL)
                    462:                fatal("BN_new failed");
                    463:        if ((q = BN_new()) == NULL)
                    464:                fatal("BN_new failed");
                    465:        if ((ctx = BN_CTX_new()) == NULL)
                    466:                fatal("BN_CTX_new failed");
1.1       djm       467:
                    468:        debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
                    469:            ctime(&time_start), trials, generator_wanted);
                    470:
                    471:        res = 0;
                    472:        lp = xmalloc(QLINESIZE + 1);
1.20      ray       473:        while (fgets(lp, QLINESIZE + 1, in) != NULL) {
1.1       djm       474:                count_in++;
1.20      ray       475:                if (strlen(lp) < 14 || *lp == '!' || *lp == '#') {
1.1       djm       476:                        debug2("%10u: comment or short line", count_in);
                    477:                        continue;
                    478:                }
                    479:
                    480:                /* XXX - fragile parser */
                    481:                /* time */
                    482:                cp = &lp[14];   /* (skip) */
                    483:
                    484:                /* type */
                    485:                in_type = strtoul(cp, &cp, 10);
                    486:
                    487:                /* tests */
                    488:                in_tests = strtoul(cp, &cp, 10);
                    489:
1.21      djm       490:                if (in_tests & MODULI_TESTS_COMPOSITE) {
1.1       djm       491:                        debug2("%10u: known composite", count_in);
                    492:                        continue;
                    493:                }
1.5       djm       494:
1.1       djm       495:                /* tries */
                    496:                in_tries = strtoul(cp, &cp, 10);
                    497:
                    498:                /* size (most significant bit) */
                    499:                in_size = strtoul(cp, &cp, 10);
                    500:
                    501:                /* generator (hex) */
                    502:                generator_known = strtoul(cp, &cp, 16);
                    503:
                    504:                /* Skip white space */
                    505:                cp += strspn(cp, " ");
                    506:
                    507:                /* modulus (hex) */
                    508:                switch (in_type) {
1.21      djm       509:                case MODULI_TYPE_SOPHIE_GERMAIN:
1.6       djm       510:                        debug2("%10u: (%u) Sophie-Germain", count_in, in_type);
1.1       djm       511:                        a = q;
1.19      markus    512:                        if (BN_hex2bn(&a, cp) == 0)
                    513:                                fatal("BN_hex2bn failed");
1.1       djm       514:                        /* p = 2*q + 1 */
1.19      markus    515:                        if (BN_lshift(p, q, 1) == 0)
                    516:                                fatal("BN_lshift failed");
                    517:                        if (BN_add_word(p, 1) == 0)
                    518:                                fatal("BN_add_word failed");
1.1       djm       519:                        in_size += 1;
                    520:                        generator_known = 0;
                    521:                        break;
1.21      djm       522:                case MODULI_TYPE_UNSTRUCTURED:
                    523:                case MODULI_TYPE_SAFE:
                    524:                case MODULI_TYPE_SCHNORR:
                    525:                case MODULI_TYPE_STRONG:
                    526:                case MODULI_TYPE_UNKNOWN:
1.1       djm       527:                        debug2("%10u: (%u)", count_in, in_type);
                    528:                        a = p;
1.19      markus    529:                        if (BN_hex2bn(&a, cp) == 0)
                    530:                                fatal("BN_hex2bn failed");
1.1       djm       531:                        /* q = (p-1) / 2 */
1.19      markus    532:                        if (BN_rshift(q, p, 1) == 0)
                    533:                                fatal("BN_rshift failed");
1.1       djm       534:                        break;
1.5       djm       535:                default:
                    536:                        debug2("Unknown prime type");
                    537:                        break;
1.1       djm       538:                }
                    539:
                    540:                /*
                    541:                 * due to earlier inconsistencies in interpretation, check
                    542:                 * the proposed bit size.
                    543:                 */
1.11      avsm      544:                if ((u_int32_t)BN_num_bits(p) != (in_size + 1)) {
1.1       djm       545:                        debug2("%10u: bit size %u mismatch", count_in, in_size);
                    546:                        continue;
                    547:                }
                    548:                if (in_size < QSIZE_MINIMUM) {
                    549:                        debug2("%10u: bit size %u too short", count_in, in_size);
                    550:                        continue;
                    551:                }
                    552:
1.21      djm       553:                if (in_tests & MODULI_TESTS_MILLER_RABIN)
1.1       djm       554:                        in_tries += trials;
                    555:                else
                    556:                        in_tries = trials;
1.5       djm       557:
1.1       djm       558:                /*
                    559:                 * guess unknown generator
                    560:                 */
                    561:                if (generator_known == 0) {
                    562:                        if (BN_mod_word(p, 24) == 11)
                    563:                                generator_known = 2;
                    564:                        else if (BN_mod_word(p, 12) == 5)
                    565:                                generator_known = 3;
                    566:                        else {
                    567:                                u_int32_t r = BN_mod_word(p, 10);
                    568:
1.5       djm       569:                                if (r == 3 || r == 7)
1.1       djm       570:                                        generator_known = 5;
                    571:                        }
                    572:                }
                    573:                /*
                    574:                 * skip tests when desired generator doesn't match
                    575:                 */
                    576:                if (generator_wanted > 0 &&
                    577:                    generator_wanted != generator_known) {
                    578:                        debug2("%10u: generator %d != %d",
                    579:                            count_in, generator_known, generator_wanted);
1.4       dtucker   580:                        continue;
                    581:                }
                    582:
                    583:                /*
                    584:                 * Primes with no known generator are useless for DH, so
                    585:                 * skip those.
                    586:                 */
                    587:                if (generator_known == 0) {
                    588:                        debug2("%10u: no known generator", count_in);
1.1       djm       589:                        continue;
                    590:                }
                    591:
                    592:                count_possible++;
                    593:
                    594:                /*
1.2       djm       595:                 * The (1/4)^N performance bound on Miller-Rabin is
                    596:                 * extremely pessimistic, so don't spend a lot of time
                    597:                 * really verifying that q is prime until after we know
                    598:                 * that p is also prime. A single pass will weed out the
1.1       djm       599:                 * vast majority of composite q's.
                    600:                 */
1.22    ! djm       601:                if (BN_is_prime_ex(q, 1, ctx, NULL) <= 0) {
1.5       djm       602:                        debug("%10u: q failed first possible prime test",
1.1       djm       603:                            count_in);
                    604:                        continue;
                    605:                }
1.2       djm       606:
1.1       djm       607:                /*
1.2       djm       608:                 * q is possibly prime, so go ahead and really make sure
                    609:                 * that p is prime. If it is, then we can go back and do
                    610:                 * the same for q. If p is composite, chances are that
1.1       djm       611:                 * will show up on the first Rabin-Miller iteration so it
                    612:                 * doesn't hurt to specify a high iteration count.
                    613:                 */
1.22    ! djm       614:                if (!BN_is_prime_ex(p, trials, ctx, NULL)) {
1.5       djm       615:                        debug("%10u: p is not prime", count_in);
1.1       djm       616:                        continue;
                    617:                }
                    618:                debug("%10u: p is almost certainly prime", count_in);
                    619:
                    620:                /* recheck q more rigorously */
1.22    ! djm       621:                if (!BN_is_prime_ex(q, trials - 1, ctx, NULL)) {
1.1       djm       622:                        debug("%10u: q is not prime", count_in);
                    623:                        continue;
                    624:                }
                    625:                debug("%10u: q is almost certainly prime", count_in);
                    626:
1.21      djm       627:                if (qfileout(out, MODULI_TYPE_SAFE,
                    628:                    in_tests | MODULI_TESTS_MILLER_RABIN,
1.1       djm       629:                    in_tries, in_size, generator_known, p)) {
                    630:                        res = -1;
                    631:                        break;
                    632:                }
                    633:
                    634:                count_out++;
                    635:        }
                    636:
                    637:        time(&time_stop);
                    638:        xfree(lp);
                    639:        BN_free(p);
                    640:        BN_free(q);
                    641:        BN_CTX_free(ctx);
                    642:
                    643:        logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
1.2       djm       644:            ctime(&time_stop), count_out, count_possible,
1.1       djm       645:            (long) (time_stop - time_start));
                    646:
                    647:        return (res);
                    648: }