[BACK]Return to moduli.c CVS log [TXT][DIR] Up to [local] / src / usr.bin / ssh

Annotation of src/usr.bin/ssh/moduli.c, Revision 1.24

1.24    ! stsp        1: /* $OpenBSD: moduli.c,v 1.23 2011/10/16 11:02:46 dtucker Exp $ */
1.1       djm         2: /*
                      3:  * Copyright 1994 Phil Karn <karn@qualcomm.com>
                      4:  * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com>
                      5:  * Copyright 2000 Niels Provos <provos@citi.umich.edu>
                      6:  * All rights reserved.
                      7:  *
                      8:  * Redistribution and use in source and binary forms, with or without
                      9:  * modification, are permitted provided that the following conditions
                     10:  * are met:
                     11:  * 1. Redistributions of source code must retain the above copyright
                     12:  *    notice, this list of conditions and the following disclaimer.
                     13:  * 2. Redistributions in binary form must reproduce the above copyright
                     14:  *    notice, this list of conditions and the following disclaimer in the
                     15:  *    documentation and/or other materials provided with the distribution.
                     16:  *
                     17:  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
                     18:  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
                     19:  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
                     20:  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
                     21:  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
                     22:  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
                     23:  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
                     24:  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
                     25:  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
                     26:  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
                     27:  */
                     28:
                     29: /*
                     30:  * Two-step process to generate safe primes for DHGEX
                     31:  *
                     32:  *  Sieve candidates for "safe" primes,
                     33:  *  suitable for use as Diffie-Hellman moduli;
                     34:  *  that is, where q = (p-1)/2 is also prime.
                     35:  *
                     36:  * First step: generate candidate primes (memory intensive)
                     37:  * Second step: test primes' safety (processor intensive)
                     38:  */
                     39:
1.24    ! stsp       40: #include <sys/param.h>
1.14      stevesk    41: #include <sys/types.h>
                     42:
                     43: #include <openssl/bn.h>
1.21      djm        44: #include <openssl/dh.h>
1.14      stevesk    45:
1.24    ! stsp       46: #include <errno.h>
1.17      stevesk    47: #include <stdio.h>
1.16      stevesk    48: #include <stdlib.h>
1.15      stevesk    49: #include <string.h>
1.18      deraadt    50: #include <stdarg.h>
1.14      stevesk    51: #include <time.h>
1.23      dtucker    52: #include <unistd.h>
1.14      stevesk    53:
1.1       djm        54: #include "xmalloc.h"
1.21      djm        55: #include "dh.h"
1.1       djm        56: #include "log.h"
                     57:
                     58: /*
                     59:  * File output defines
                     60:  */
                     61:
                     62: /* need line long enough for largest moduli plus headers */
1.9       deraadt    63: #define QLINESIZE              (100+8192)
1.1       djm        64:
1.5       djm        65: /*
                     66:  * Size: decimal.
1.1       djm        67:  * Specifies the number of the most significant bit (0 to M).
1.5       djm        68:  * WARNING: internally, usually 1 to N.
1.1       djm        69:  */
1.9       deraadt    70: #define QSIZE_MINIMUM          (511)
1.1       djm        71:
                     72: /*
                     73:  * Prime sieving defines
                     74:  */
                     75:
                     76: /* Constant: assuming 8 bit bytes and 32 bit words */
1.9       deraadt    77: #define SHIFT_BIT      (3)
                     78: #define SHIFT_BYTE     (2)
                     79: #define SHIFT_WORD     (SHIFT_BIT+SHIFT_BYTE)
                     80: #define SHIFT_MEGABYTE (20)
                     81: #define SHIFT_MEGAWORD (SHIFT_MEGABYTE-SHIFT_BYTE)
1.1       djm        82:
                     83: /*
1.7       djm        84:  * Using virtual memory can cause thrashing.  This should be the largest
                     85:  * number that is supported without a large amount of disk activity --
                     86:  * that would increase the run time from hours to days or weeks!
                     87:  */
1.9       deraadt    88: #define LARGE_MINIMUM  (8UL)   /* megabytes */
1.7       djm        89:
                     90: /*
                     91:  * Do not increase this number beyond the unsigned integer bit size.
                     92:  * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits).
                     93:  */
1.9       deraadt    94: #define LARGE_MAXIMUM  (127UL) /* megabytes */
1.7       djm        95:
                     96: /*
1.1       djm        97:  * Constant: when used with 32-bit integers, the largest sieve prime
                     98:  * has to be less than 2**32.
                     99:  */
1.9       deraadt   100: #define SMALL_MAXIMUM  (0xffffffffUL)
1.1       djm       101:
                    102: /* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
1.9       deraadt   103: #define TINY_NUMBER    (1UL<<16)
1.1       djm       104:
                    105: /* Ensure enough bit space for testing 2*q. */
1.12      djm       106: #define TEST_MAXIMUM   (1UL<<16)
                    107: #define TEST_MINIMUM   (QSIZE_MINIMUM + 1)
                    108: /* real TEST_MINIMUM   (1UL << (SHIFT_WORD - TEST_POWER)) */
                    109: #define TEST_POWER     (3)     /* 2**n, n < SHIFT_WORD */
1.1       djm       110:
                    111: /* bit operations on 32-bit words */
1.12      djm       112: #define BIT_CLEAR(a,n) ((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
                    113: #define BIT_SET(a,n)   ((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
                    114: #define BIT_TEST(a,n)  ((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))
1.1       djm       115:
                    116: /*
                    117:  * Prime testing defines
                    118:  */
                    119:
1.7       djm       120: /* Minimum number of primality tests to perform */
1.12      djm       121: #define TRIAL_MINIMUM  (4)
1.7       djm       122:
1.1       djm       123: /*
                    124:  * Sieving data (XXX - move to struct)
                    125:  */
                    126:
                    127: /* sieve 2**16 */
                    128: static u_int32_t *TinySieve, tinybits;
                    129:
                    130: /* sieve 2**30 in 2**16 parts */
                    131: static u_int32_t *SmallSieve, smallbits, smallbase;
                    132:
                    133: /* sieve relative to the initial value */
                    134: static u_int32_t *LargeSieve, largewords, largetries, largenumbers;
                    135: static u_int32_t largebits, largememory;       /* megabytes */
                    136: static BIGNUM *largebase;
                    137:
1.11      avsm      138: int gen_candidates(FILE *, u_int32_t, u_int32_t, BIGNUM *);
1.23      dtucker   139: int prime_test(FILE *, FILE *, u_int32_t, u_int32_t, char *);
1.1       djm       140:
                    141: /*
                    142:  * print moduli out in consistent form,
                    143:  */
                    144: static int
                    145: qfileout(FILE * ofile, u_int32_t otype, u_int32_t otests, u_int32_t otries,
                    146:     u_int32_t osize, u_int32_t ogenerator, BIGNUM * omodulus)
                    147: {
                    148:        struct tm *gtm;
                    149:        time_t time_now;
                    150:        int res;
                    151:
                    152:        time(&time_now);
                    153:        gtm = gmtime(&time_now);
1.2       djm       154:
1.1       djm       155:        res = fprintf(ofile, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
                    156:            gtm->tm_year + 1900, gtm->tm_mon + 1, gtm->tm_mday,
                    157:            gtm->tm_hour, gtm->tm_min, gtm->tm_sec,
                    158:            otype, otests, otries, osize, ogenerator);
                    159:
                    160:        if (res < 0)
                    161:                return (-1);
                    162:
                    163:        if (BN_print_fp(ofile, omodulus) < 1)
                    164:                return (-1);
                    165:
                    166:        res = fprintf(ofile, "\n");
                    167:        fflush(ofile);
                    168:
                    169:        return (res > 0 ? 0 : -1);
                    170: }
                    171:
                    172:
                    173: /*
                    174:  ** Sieve p's and q's with small factors
                    175:  */
                    176: static void
                    177: sieve_large(u_int32_t s)
                    178: {
                    179:        u_int32_t r, u;
                    180:
1.5       djm       181:        debug3("sieve_large %u", s);
1.1       djm       182:        largetries++;
                    183:        /* r = largebase mod s */
                    184:        r = BN_mod_word(largebase, s);
                    185:        if (r == 0)
                    186:                u = 0; /* s divides into largebase exactly */
                    187:        else
                    188:                u = s - r; /* largebase+u is first entry divisible by s */
                    189:
                    190:        if (u < largebits * 2) {
                    191:                /*
                    192:                 * The sieve omits p's and q's divisible by 2, so ensure that
                    193:                 * largebase+u is odd. Then, step through the sieve in
                    194:                 * increments of 2*s
                    195:                 */
                    196:                if (u & 0x1)
                    197:                        u += s; /* Make largebase+u odd, and u even */
                    198:
                    199:                /* Mark all multiples of 2*s */
                    200:                for (u /= 2; u < largebits; u += s)
                    201:                        BIT_SET(LargeSieve, u);
                    202:        }
                    203:
                    204:        /* r = p mod s */
                    205:        r = (2 * r + 1) % s;
                    206:        if (r == 0)
                    207:                u = 0; /* s divides p exactly */
                    208:        else
                    209:                u = s - r; /* p+u is first entry divisible by s */
                    210:
                    211:        if (u < largebits * 4) {
                    212:                /*
                    213:                 * The sieve omits p's divisible by 4, so ensure that
                    214:                 * largebase+u is not. Then, step through the sieve in
                    215:                 * increments of 4*s
                    216:                 */
                    217:                while (u & 0x3) {
                    218:                        if (SMALL_MAXIMUM - u < s)
                    219:                                return;
                    220:                        u += s;
                    221:                }
                    222:
                    223:                /* Mark all multiples of 4*s */
                    224:                for (u /= 4; u < largebits; u += s)
                    225:                        BIT_SET(LargeSieve, u);
                    226:        }
                    227: }
                    228:
                    229: /*
1.6       djm       230:  * list candidates for Sophie-Germain primes (where q = (p-1)/2)
1.1       djm       231:  * to standard output.
                    232:  * The list is checked against small known primes (less than 2**30).
                    233:  */
                    234: int
1.11      avsm      235: gen_candidates(FILE *out, u_int32_t memory, u_int32_t power, BIGNUM *start)
1.1       djm       236: {
                    237:        BIGNUM *q;
                    238:        u_int32_t j, r, s, t;
                    239:        u_int32_t smallwords = TINY_NUMBER >> 6;
                    240:        u_int32_t tinywords = TINY_NUMBER >> 6;
                    241:        time_t time_start, time_stop;
1.11      avsm      242:        u_int32_t i;
                    243:        int ret = 0;
1.1       djm       244:
                    245:        largememory = memory;
                    246:
1.7       djm       247:        if (memory != 0 &&
1.12      djm       248:            (memory < LARGE_MINIMUM || memory > LARGE_MAXIMUM)) {
1.7       djm       249:                error("Invalid memory amount (min %ld, max %ld)",
                    250:                    LARGE_MINIMUM, LARGE_MAXIMUM);
                    251:                return (-1);
                    252:        }
                    253:
1.1       djm       254:        /*
1.2       djm       255:         * Set power to the length in bits of the prime to be generated.
                    256:         * This is changed to 1 less than the desired safe prime moduli p.
                    257:         */
1.1       djm       258:        if (power > TEST_MAXIMUM) {
                    259:                error("Too many bits: %u > %lu", power, TEST_MAXIMUM);
                    260:                return (-1);
                    261:        } else if (power < TEST_MINIMUM) {
                    262:                error("Too few bits: %u < %u", power, TEST_MINIMUM);
                    263:                return (-1);
                    264:        }
                    265:        power--; /* decrement before squaring */
                    266:
                    267:        /*
1.2       djm       268:         * The density of ordinary primes is on the order of 1/bits, so the
                    269:         * density of safe primes should be about (1/bits)**2. Set test range
                    270:         * to something well above bits**2 to be reasonably sure (but not
                    271:         * guaranteed) of catching at least one safe prime.
1.1       djm       272:         */
                    273:        largewords = ((power * power) >> (SHIFT_WORD - TEST_POWER));
                    274:
                    275:        /*
1.2       djm       276:         * Need idea of how much memory is available. We don't have to use all
                    277:         * of it.
1.1       djm       278:         */
                    279:        if (largememory > LARGE_MAXIMUM) {
                    280:                logit("Limited memory: %u MB; limit %lu MB",
                    281:                    largememory, LARGE_MAXIMUM);
                    282:                largememory = LARGE_MAXIMUM;
                    283:        }
                    284:
                    285:        if (largewords <= (largememory << SHIFT_MEGAWORD)) {
                    286:                logit("Increased memory: %u MB; need %u bytes",
                    287:                    largememory, (largewords << SHIFT_BYTE));
                    288:                largewords = (largememory << SHIFT_MEGAWORD);
                    289:        } else if (largememory > 0) {
                    290:                logit("Decreased memory: %u MB; want %u bytes",
                    291:                    largememory, (largewords << SHIFT_BYTE));
                    292:                largewords = (largememory << SHIFT_MEGAWORD);
                    293:        }
                    294:
1.13      djm       295:        TinySieve = xcalloc(tinywords, sizeof(u_int32_t));
1.1       djm       296:        tinybits = tinywords << SHIFT_WORD;
                    297:
1.13      djm       298:        SmallSieve = xcalloc(smallwords, sizeof(u_int32_t));
1.1       djm       299:        smallbits = smallwords << SHIFT_WORD;
                    300:
                    301:        /*
                    302:         * dynamically determine available memory
                    303:         */
                    304:        while ((LargeSieve = calloc(largewords, sizeof(u_int32_t))) == NULL)
                    305:                largewords -= (1L << (SHIFT_MEGAWORD - 2)); /* 1/4 MB chunks */
                    306:
                    307:        largebits = largewords << SHIFT_WORD;
                    308:        largenumbers = largebits * 2;   /* even numbers excluded */
                    309:
                    310:        /* validation check: count the number of primes tried */
                    311:        largetries = 0;
1.19      markus    312:        if ((q = BN_new()) == NULL)
                    313:                fatal("BN_new failed");
1.1       djm       314:
                    315:        /*
1.2       djm       316:         * Generate random starting point for subprime search, or use
                    317:         * specified parameter.
1.1       djm       318:         */
1.19      markus    319:        if ((largebase = BN_new()) == NULL)
                    320:                fatal("BN_new failed");
                    321:        if (start == NULL) {
                    322:                if (BN_rand(largebase, power, 1, 1) == 0)
                    323:                        fatal("BN_rand failed");
                    324:        } else {
                    325:                if (BN_copy(largebase, start) == NULL)
                    326:                        fatal("BN_copy: failed");
                    327:        }
1.1       djm       328:
                    329:        /* ensure odd */
1.19      markus    330:        if (BN_set_bit(largebase, 0) == 0)
                    331:                fatal("BN_set_bit: failed");
1.1       djm       332:
                    333:        time(&time_start);
                    334:
1.2       djm       335:        logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start),
1.1       djm       336:            largenumbers, power);
                    337:        debug2("start point: 0x%s", BN_bn2hex(largebase));
                    338:
                    339:        /*
1.2       djm       340:         * TinySieve
                    341:         */
1.1       djm       342:        for (i = 0; i < tinybits; i++) {
                    343:                if (BIT_TEST(TinySieve, i))
                    344:                        continue; /* 2*i+3 is composite */
                    345:
                    346:                /* The next tiny prime */
                    347:                t = 2 * i + 3;
                    348:
                    349:                /* Mark all multiples of t */
                    350:                for (j = i + t; j < tinybits; j += t)
                    351:                        BIT_SET(TinySieve, j);
                    352:
                    353:                sieve_large(t);
                    354:        }
                    355:
                    356:        /*
1.2       djm       357:         * Start the small block search at the next possible prime. To avoid
                    358:         * fencepost errors, the last pass is skipped.
                    359:         */
1.1       djm       360:        for (smallbase = TINY_NUMBER + 3;
1.12      djm       361:            smallbase < (SMALL_MAXIMUM - TINY_NUMBER);
                    362:            smallbase += TINY_NUMBER) {
1.1       djm       363:                for (i = 0; i < tinybits; i++) {
                    364:                        if (BIT_TEST(TinySieve, i))
                    365:                                continue; /* 2*i+3 is composite */
                    366:
                    367:                        /* The next tiny prime */
                    368:                        t = 2 * i + 3;
                    369:                        r = smallbase % t;
                    370:
                    371:                        if (r == 0) {
                    372:                                s = 0; /* t divides into smallbase exactly */
                    373:                        } else {
                    374:                                /* smallbase+s is first entry divisible by t */
                    375:                                s = t - r;
                    376:                        }
                    377:
                    378:                        /*
                    379:                         * The sieve omits even numbers, so ensure that
                    380:                         * smallbase+s is odd. Then, step through the sieve
                    381:                         * in increments of 2*t
                    382:                         */
                    383:                        if (s & 1)
                    384:                                s += t; /* Make smallbase+s odd, and s even */
                    385:
                    386:                        /* Mark all multiples of 2*t */
                    387:                        for (s /= 2; s < smallbits; s += t)
                    388:                                BIT_SET(SmallSieve, s);
                    389:                }
                    390:
                    391:                /*
1.2       djm       392:                 * SmallSieve
                    393:                 */
1.1       djm       394:                for (i = 0; i < smallbits; i++) {
                    395:                        if (BIT_TEST(SmallSieve, i))
                    396:                                continue; /* 2*i+smallbase is composite */
                    397:
                    398:                        /* The next small prime */
                    399:                        sieve_large((2 * i) + smallbase);
                    400:                }
                    401:
                    402:                memset(SmallSieve, 0, smallwords << SHIFT_BYTE);
                    403:        }
                    404:
                    405:        time(&time_stop);
                    406:
                    407:        logit("%.24s Sieved with %u small primes in %ld seconds",
                    408:            ctime(&time_stop), largetries, (long) (time_stop - time_start));
                    409:
                    410:        for (j = r = 0; j < largebits; j++) {
                    411:                if (BIT_TEST(LargeSieve, j))
                    412:                        continue; /* Definitely composite, skip */
                    413:
                    414:                debug2("test q = largebase+%u", 2 * j);
1.19      markus    415:                if (BN_set_word(q, 2 * j) == 0)
                    416:                        fatal("BN_set_word failed");
                    417:                if (BN_add(q, q, largebase) == 0)
                    418:                        fatal("BN_add failed");
1.21      djm       419:                if (qfileout(out, MODULI_TYPE_SOPHIE_GERMAIN,
                    420:                    MODULI_TESTS_SIEVE, largetries,
                    421:                    (power - 1) /* MSB */, (0), q) == -1) {
1.1       djm       422:                        ret = -1;
                    423:                        break;
                    424:                }
                    425:
                    426:                r++; /* count q */
                    427:        }
                    428:
                    429:        time(&time_stop);
                    430:
                    431:        xfree(LargeSieve);
                    432:        xfree(SmallSieve);
                    433:        xfree(TinySieve);
                    434:
                    435:        logit("%.24s Found %u candidates", ctime(&time_stop), r);
                    436:
                    437:        return (ret);
                    438: }
                    439:
1.23      dtucker   440: static void
                    441: write_checkpoint(char *cpfile, u_int32_t lineno)
                    442: {
                    443:        FILE *fp;
                    444:        char tmpfile[MAXPATHLEN];
                    445:        int r;
                    446:
                    447:        r = snprintf(tmpfile, sizeof(tmpfile), "%s.XXXXXXXXXX", cpfile);
                    448:        if (r == -1 || r >= MAXPATHLEN) {
                    449:                logit("write_checkpoint: temp pathname too long");
                    450:                return;
                    451:        }
                    452:        if ((r = mkstemp(tmpfile)) == -1) {
                    453:                logit("mkstemp(%s): %s", tmpfile, strerror(errno));
                    454:                return;
                    455:        }
                    456:        if ((fp = fdopen(r, "w")) == NULL) {
                    457:                logit("write_checkpoint: fdopen: %s", strerror(errno));
                    458:                close(r);
                    459:                return;
                    460:        }
                    461:        if (fprintf(fp, "%lu\n", (unsigned long)lineno) > 0 && fclose(fp) == 0
                    462:            && rename(tmpfile, cpfile) == 0)
                    463:                debug3("wrote checkpoint line %lu to '%s'",
                    464:                    (unsigned long)lineno, cpfile);
                    465:        else
                    466:                logit("failed to write to checkpoint file '%s': %s", cpfile,
                    467:                    strerror(errno));
                    468: }
                    469:
                    470: static unsigned long
                    471: read_checkpoint(char *cpfile)
                    472: {
                    473:        FILE *fp;
                    474:        unsigned long lineno = 0;
                    475:
                    476:        if ((fp = fopen(cpfile, "r")) == NULL)
                    477:                return 0;
                    478:        if (fscanf(fp, "%lu\n", &lineno) < 1)
                    479:                logit("Failed to load checkpoint from '%s'", cpfile);
                    480:        else
                    481:                logit("Loaded checkpoint from '%s' line %lu", cpfile, lineno);
                    482:        fclose(fp);
                    483:        return lineno;
                    484: }
                    485:
1.1       djm       486: /*
                    487:  * perform a Miller-Rabin primality test
                    488:  * on the list of candidates
                    489:  * (checking both q and p)
                    490:  * The result is a list of so-call "safe" primes
                    491:  */
                    492: int
1.23      dtucker   493: prime_test(FILE *in, FILE *out, u_int32_t trials, u_int32_t generator_wanted,
                    494:     char *checkpoint_file)
1.1       djm       495: {
                    496:        BIGNUM *q, *p, *a;
                    497:        BN_CTX *ctx;
                    498:        char *cp, *lp;
                    499:        u_int32_t count_in = 0, count_out = 0, count_possible = 0;
                    500:        u_int32_t generator_known, in_tests, in_tries, in_type, in_size;
1.23      dtucker   501:        unsigned long last_processed = 0;
1.1       djm       502:        time_t time_start, time_stop;
                    503:        int res;
1.7       djm       504:
                    505:        if (trials < TRIAL_MINIMUM) {
                    506:                error("Minimum primality trials is %d", TRIAL_MINIMUM);
                    507:                return (-1);
                    508:        }
1.1       djm       509:
                    510:        time(&time_start);
                    511:
1.19      markus    512:        if ((p = BN_new()) == NULL)
                    513:                fatal("BN_new failed");
                    514:        if ((q = BN_new()) == NULL)
                    515:                fatal("BN_new failed");
                    516:        if ((ctx = BN_CTX_new()) == NULL)
                    517:                fatal("BN_CTX_new failed");
1.1       djm       518:
                    519:        debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
                    520:            ctime(&time_start), trials, generator_wanted);
                    521:
1.23      dtucker   522:        if (checkpoint_file != NULL)
                    523:                last_processed = read_checkpoint(checkpoint_file);
                    524:
1.1       djm       525:        res = 0;
                    526:        lp = xmalloc(QLINESIZE + 1);
1.20      ray       527:        while (fgets(lp, QLINESIZE + 1, in) != NULL) {
1.1       djm       528:                count_in++;
1.23      dtucker   529:                if (checkpoint_file != NULL) {
                    530:                        if (count_in <= last_processed) {
                    531:                                debug3("skipping line %u, before checkpoint",
                    532:                                    count_in);
                    533:                                continue;
                    534:                        }
                    535:                        write_checkpoint(checkpoint_file, count_in);
                    536:                }
1.20      ray       537:                if (strlen(lp) < 14 || *lp == '!' || *lp == '#') {
1.1       djm       538:                        debug2("%10u: comment or short line", count_in);
                    539:                        continue;
                    540:                }
                    541:
                    542:                /* XXX - fragile parser */
                    543:                /* time */
                    544:                cp = &lp[14];   /* (skip) */
                    545:
                    546:                /* type */
                    547:                in_type = strtoul(cp, &cp, 10);
                    548:
                    549:                /* tests */
                    550:                in_tests = strtoul(cp, &cp, 10);
                    551:
1.21      djm       552:                if (in_tests & MODULI_TESTS_COMPOSITE) {
1.1       djm       553:                        debug2("%10u: known composite", count_in);
                    554:                        continue;
                    555:                }
1.5       djm       556:
1.1       djm       557:                /* tries */
                    558:                in_tries = strtoul(cp, &cp, 10);
                    559:
                    560:                /* size (most significant bit) */
                    561:                in_size = strtoul(cp, &cp, 10);
                    562:
                    563:                /* generator (hex) */
                    564:                generator_known = strtoul(cp, &cp, 16);
                    565:
                    566:                /* Skip white space */
                    567:                cp += strspn(cp, " ");
                    568:
                    569:                /* modulus (hex) */
                    570:                switch (in_type) {
1.21      djm       571:                case MODULI_TYPE_SOPHIE_GERMAIN:
1.6       djm       572:                        debug2("%10u: (%u) Sophie-Germain", count_in, in_type);
1.1       djm       573:                        a = q;
1.19      markus    574:                        if (BN_hex2bn(&a, cp) == 0)
                    575:                                fatal("BN_hex2bn failed");
1.1       djm       576:                        /* p = 2*q + 1 */
1.19      markus    577:                        if (BN_lshift(p, q, 1) == 0)
                    578:                                fatal("BN_lshift failed");
                    579:                        if (BN_add_word(p, 1) == 0)
                    580:                                fatal("BN_add_word failed");
1.1       djm       581:                        in_size += 1;
                    582:                        generator_known = 0;
                    583:                        break;
1.21      djm       584:                case MODULI_TYPE_UNSTRUCTURED:
                    585:                case MODULI_TYPE_SAFE:
                    586:                case MODULI_TYPE_SCHNORR:
                    587:                case MODULI_TYPE_STRONG:
                    588:                case MODULI_TYPE_UNKNOWN:
1.1       djm       589:                        debug2("%10u: (%u)", count_in, in_type);
                    590:                        a = p;
1.19      markus    591:                        if (BN_hex2bn(&a, cp) == 0)
                    592:                                fatal("BN_hex2bn failed");
1.1       djm       593:                        /* q = (p-1) / 2 */
1.19      markus    594:                        if (BN_rshift(q, p, 1) == 0)
                    595:                                fatal("BN_rshift failed");
1.1       djm       596:                        break;
1.5       djm       597:                default:
                    598:                        debug2("Unknown prime type");
                    599:                        break;
1.1       djm       600:                }
                    601:
                    602:                /*
                    603:                 * due to earlier inconsistencies in interpretation, check
                    604:                 * the proposed bit size.
                    605:                 */
1.11      avsm      606:                if ((u_int32_t)BN_num_bits(p) != (in_size + 1)) {
1.1       djm       607:                        debug2("%10u: bit size %u mismatch", count_in, in_size);
                    608:                        continue;
                    609:                }
                    610:                if (in_size < QSIZE_MINIMUM) {
                    611:                        debug2("%10u: bit size %u too short", count_in, in_size);
                    612:                        continue;
                    613:                }
                    614:
1.21      djm       615:                if (in_tests & MODULI_TESTS_MILLER_RABIN)
1.1       djm       616:                        in_tries += trials;
                    617:                else
                    618:                        in_tries = trials;
1.5       djm       619:
1.1       djm       620:                /*
                    621:                 * guess unknown generator
                    622:                 */
                    623:                if (generator_known == 0) {
                    624:                        if (BN_mod_word(p, 24) == 11)
                    625:                                generator_known = 2;
                    626:                        else if (BN_mod_word(p, 12) == 5)
                    627:                                generator_known = 3;
                    628:                        else {
                    629:                                u_int32_t r = BN_mod_word(p, 10);
                    630:
1.5       djm       631:                                if (r == 3 || r == 7)
1.1       djm       632:                                        generator_known = 5;
                    633:                        }
                    634:                }
                    635:                /*
                    636:                 * skip tests when desired generator doesn't match
                    637:                 */
                    638:                if (generator_wanted > 0 &&
                    639:                    generator_wanted != generator_known) {
                    640:                        debug2("%10u: generator %d != %d",
                    641:                            count_in, generator_known, generator_wanted);
1.4       dtucker   642:                        continue;
                    643:                }
                    644:
                    645:                /*
                    646:                 * Primes with no known generator are useless for DH, so
                    647:                 * skip those.
                    648:                 */
                    649:                if (generator_known == 0) {
                    650:                        debug2("%10u: no known generator", count_in);
1.1       djm       651:                        continue;
                    652:                }
                    653:
                    654:                count_possible++;
                    655:
                    656:                /*
1.2       djm       657:                 * The (1/4)^N performance bound on Miller-Rabin is
                    658:                 * extremely pessimistic, so don't spend a lot of time
                    659:                 * really verifying that q is prime until after we know
                    660:                 * that p is also prime. A single pass will weed out the
1.1       djm       661:                 * vast majority of composite q's.
                    662:                 */
1.22      djm       663:                if (BN_is_prime_ex(q, 1, ctx, NULL) <= 0) {
1.5       djm       664:                        debug("%10u: q failed first possible prime test",
1.1       djm       665:                            count_in);
                    666:                        continue;
                    667:                }
1.2       djm       668:
1.1       djm       669:                /*
1.2       djm       670:                 * q is possibly prime, so go ahead and really make sure
                    671:                 * that p is prime. If it is, then we can go back and do
                    672:                 * the same for q. If p is composite, chances are that
1.1       djm       673:                 * will show up on the first Rabin-Miller iteration so it
                    674:                 * doesn't hurt to specify a high iteration count.
                    675:                 */
1.22      djm       676:                if (!BN_is_prime_ex(p, trials, ctx, NULL)) {
1.5       djm       677:                        debug("%10u: p is not prime", count_in);
1.1       djm       678:                        continue;
                    679:                }
                    680:                debug("%10u: p is almost certainly prime", count_in);
                    681:
                    682:                /* recheck q more rigorously */
1.22      djm       683:                if (!BN_is_prime_ex(q, trials - 1, ctx, NULL)) {
1.1       djm       684:                        debug("%10u: q is not prime", count_in);
                    685:                        continue;
                    686:                }
                    687:                debug("%10u: q is almost certainly prime", count_in);
                    688:
1.21      djm       689:                if (qfileout(out, MODULI_TYPE_SAFE,
                    690:                    in_tests | MODULI_TESTS_MILLER_RABIN,
1.1       djm       691:                    in_tries, in_size, generator_known, p)) {
                    692:                        res = -1;
                    693:                        break;
                    694:                }
                    695:
                    696:                count_out++;
                    697:        }
                    698:
                    699:        time(&time_stop);
                    700:        xfree(lp);
                    701:        BN_free(p);
                    702:        BN_free(q);
                    703:        BN_CTX_free(ctx);
1.23      dtucker   704:
                    705:        if (checkpoint_file != NULL)
                    706:                unlink(checkpoint_file);
1.1       djm       707:
                    708:        logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
1.2       djm       709:            ctime(&time_stop), count_out, count_possible,
1.1       djm       710:            (long) (time_stop - time_start));
                    711:
                    712:        return (res);
                    713: }