[BACK]Return to moduli.c CVS log [TXT][DIR] Up to [local] / src / usr.bin / ssh

Annotation of src/usr.bin/ssh/moduli.c, Revision 1.29

1.29    ! doug        1: /* $OpenBSD: moduli.c,v 1.28 2013/10/24 00:49:49 dtucker Exp $ */
1.1       djm         2: /*
                      3:  * Copyright 1994 Phil Karn <karn@qualcomm.com>
                      4:  * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com>
                      5:  * Copyright 2000 Niels Provos <provos@citi.umich.edu>
                      6:  * All rights reserved.
                      7:  *
                      8:  * Redistribution and use in source and binary forms, with or without
                      9:  * modification, are permitted provided that the following conditions
                     10:  * are met:
                     11:  * 1. Redistributions of source code must retain the above copyright
                     12:  *    notice, this list of conditions and the following disclaimer.
                     13:  * 2. Redistributions in binary form must reproduce the above copyright
                     14:  *    notice, this list of conditions and the following disclaimer in the
                     15:  *    documentation and/or other materials provided with the distribution.
                     16:  *
                     17:  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
                     18:  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
                     19:  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
                     20:  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
                     21:  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
                     22:  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
                     23:  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
                     24:  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
                     25:  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
                     26:  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
                     27:  */
                     28:
                     29: /*
                     30:  * Two-step process to generate safe primes for DHGEX
                     31:  *
                     32:  *  Sieve candidates for "safe" primes,
                     33:  *  suitable for use as Diffie-Hellman moduli;
                     34:  *  that is, where q = (p-1)/2 is also prime.
                     35:  *
                     36:  * First step: generate candidate primes (memory intensive)
                     37:  * Second step: test primes' safety (processor intensive)
                     38:  */
                     39:
1.24      stsp       40: #include <sys/param.h>
1.14      stevesk    41: #include <sys/types.h>
                     42:
                     43: #include <openssl/bn.h>
1.21      djm        44: #include <openssl/dh.h>
1.14      stevesk    45:
1.24      stsp       46: #include <errno.h>
1.17      stevesk    47: #include <stdio.h>
1.16      stevesk    48: #include <stdlib.h>
1.15      stevesk    49: #include <string.h>
1.18      deraadt    50: #include <stdarg.h>
1.14      stevesk    51: #include <time.h>
1.23      dtucker    52: #include <unistd.h>
1.14      stevesk    53:
1.1       djm        54: #include "xmalloc.h"
1.21      djm        55: #include "dh.h"
1.1       djm        56: #include "log.h"
1.28      dtucker    57: #include "misc.h"
1.1       djm        58:
                     59: /*
                     60:  * File output defines
                     61:  */
                     62:
                     63: /* need line long enough for largest moduli plus headers */
1.9       deraadt    64: #define QLINESIZE              (100+8192)
1.1       djm        65:
1.5       djm        66: /*
                     67:  * Size: decimal.
1.1       djm        68:  * Specifies the number of the most significant bit (0 to M).
1.5       djm        69:  * WARNING: internally, usually 1 to N.
1.1       djm        70:  */
1.9       deraadt    71: #define QSIZE_MINIMUM          (511)
1.1       djm        72:
                     73: /*
                     74:  * Prime sieving defines
                     75:  */
                     76:
                     77: /* Constant: assuming 8 bit bytes and 32 bit words */
1.9       deraadt    78: #define SHIFT_BIT      (3)
                     79: #define SHIFT_BYTE     (2)
                     80: #define SHIFT_WORD     (SHIFT_BIT+SHIFT_BYTE)
                     81: #define SHIFT_MEGABYTE (20)
                     82: #define SHIFT_MEGAWORD (SHIFT_MEGABYTE-SHIFT_BYTE)
1.1       djm        83:
                     84: /*
1.7       djm        85:  * Using virtual memory can cause thrashing.  This should be the largest
                     86:  * number that is supported without a large amount of disk activity --
                     87:  * that would increase the run time from hours to days or weeks!
                     88:  */
1.9       deraadt    89: #define LARGE_MINIMUM  (8UL)   /* megabytes */
1.7       djm        90:
                     91: /*
                     92:  * Do not increase this number beyond the unsigned integer bit size.
                     93:  * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits).
                     94:  */
1.9       deraadt    95: #define LARGE_MAXIMUM  (127UL) /* megabytes */
1.7       djm        96:
                     97: /*
1.1       djm        98:  * Constant: when used with 32-bit integers, the largest sieve prime
                     99:  * has to be less than 2**32.
                    100:  */
1.9       deraadt   101: #define SMALL_MAXIMUM  (0xffffffffUL)
1.1       djm       102:
                    103: /* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
1.9       deraadt   104: #define TINY_NUMBER    (1UL<<16)
1.1       djm       105:
                    106: /* Ensure enough bit space for testing 2*q. */
1.12      djm       107: #define TEST_MAXIMUM   (1UL<<16)
                    108: #define TEST_MINIMUM   (QSIZE_MINIMUM + 1)
                    109: /* real TEST_MINIMUM   (1UL << (SHIFT_WORD - TEST_POWER)) */
                    110: #define TEST_POWER     (3)     /* 2**n, n < SHIFT_WORD */
1.1       djm       111:
                    112: /* bit operations on 32-bit words */
1.12      djm       113: #define BIT_CLEAR(a,n) ((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
                    114: #define BIT_SET(a,n)   ((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
                    115: #define BIT_TEST(a,n)  ((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))
1.1       djm       116:
                    117: /*
                    118:  * Prime testing defines
                    119:  */
                    120:
1.7       djm       121: /* Minimum number of primality tests to perform */
1.12      djm       122: #define TRIAL_MINIMUM  (4)
1.7       djm       123:
1.1       djm       124: /*
                    125:  * Sieving data (XXX - move to struct)
                    126:  */
                    127:
                    128: /* sieve 2**16 */
                    129: static u_int32_t *TinySieve, tinybits;
                    130:
                    131: /* sieve 2**30 in 2**16 parts */
                    132: static u_int32_t *SmallSieve, smallbits, smallbase;
                    133:
                    134: /* sieve relative to the initial value */
                    135: static u_int32_t *LargeSieve, largewords, largetries, largenumbers;
                    136: static u_int32_t largebits, largememory;       /* megabytes */
                    137: static BIGNUM *largebase;
                    138:
1.11      avsm      139: int gen_candidates(FILE *, u_int32_t, u_int32_t, BIGNUM *);
1.26      dtucker   140: int prime_test(FILE *, FILE *, u_int32_t, u_int32_t, char *, unsigned long,
                    141:     unsigned long);
1.1       djm       142:
                    143: /*
                    144:  * print moduli out in consistent form,
                    145:  */
                    146: static int
                    147: qfileout(FILE * ofile, u_int32_t otype, u_int32_t otests, u_int32_t otries,
                    148:     u_int32_t osize, u_int32_t ogenerator, BIGNUM * omodulus)
                    149: {
                    150:        struct tm *gtm;
                    151:        time_t time_now;
                    152:        int res;
                    153:
                    154:        time(&time_now);
                    155:        gtm = gmtime(&time_now);
1.2       djm       156:
1.1       djm       157:        res = fprintf(ofile, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
                    158:            gtm->tm_year + 1900, gtm->tm_mon + 1, gtm->tm_mday,
                    159:            gtm->tm_hour, gtm->tm_min, gtm->tm_sec,
                    160:            otype, otests, otries, osize, ogenerator);
                    161:
                    162:        if (res < 0)
                    163:                return (-1);
                    164:
                    165:        if (BN_print_fp(ofile, omodulus) < 1)
                    166:                return (-1);
                    167:
                    168:        res = fprintf(ofile, "\n");
                    169:        fflush(ofile);
                    170:
                    171:        return (res > 0 ? 0 : -1);
                    172: }
                    173:
                    174:
                    175: /*
                    176:  ** Sieve p's and q's with small factors
                    177:  */
                    178: static void
                    179: sieve_large(u_int32_t s)
                    180: {
                    181:        u_int32_t r, u;
                    182:
1.5       djm       183:        debug3("sieve_large %u", s);
1.1       djm       184:        largetries++;
                    185:        /* r = largebase mod s */
                    186:        r = BN_mod_word(largebase, s);
                    187:        if (r == 0)
                    188:                u = 0; /* s divides into largebase exactly */
                    189:        else
                    190:                u = s - r; /* largebase+u is first entry divisible by s */
                    191:
                    192:        if (u < largebits * 2) {
                    193:                /*
                    194:                 * The sieve omits p's and q's divisible by 2, so ensure that
                    195:                 * largebase+u is odd. Then, step through the sieve in
                    196:                 * increments of 2*s
                    197:                 */
                    198:                if (u & 0x1)
                    199:                        u += s; /* Make largebase+u odd, and u even */
                    200:
                    201:                /* Mark all multiples of 2*s */
                    202:                for (u /= 2; u < largebits; u += s)
                    203:                        BIT_SET(LargeSieve, u);
                    204:        }
                    205:
                    206:        /* r = p mod s */
                    207:        r = (2 * r + 1) % s;
                    208:        if (r == 0)
                    209:                u = 0; /* s divides p exactly */
                    210:        else
                    211:                u = s - r; /* p+u is first entry divisible by s */
                    212:
                    213:        if (u < largebits * 4) {
                    214:                /*
                    215:                 * The sieve omits p's divisible by 4, so ensure that
                    216:                 * largebase+u is not. Then, step through the sieve in
                    217:                 * increments of 4*s
                    218:                 */
                    219:                while (u & 0x3) {
                    220:                        if (SMALL_MAXIMUM - u < s)
                    221:                                return;
                    222:                        u += s;
                    223:                }
                    224:
                    225:                /* Mark all multiples of 4*s */
                    226:                for (u /= 4; u < largebits; u += s)
                    227:                        BIT_SET(LargeSieve, u);
                    228:        }
                    229: }
                    230:
                    231: /*
1.6       djm       232:  * list candidates for Sophie-Germain primes (where q = (p-1)/2)
1.1       djm       233:  * to standard output.
                    234:  * The list is checked against small known primes (less than 2**30).
                    235:  */
                    236: int
1.11      avsm      237: gen_candidates(FILE *out, u_int32_t memory, u_int32_t power, BIGNUM *start)
1.1       djm       238: {
                    239:        BIGNUM *q;
                    240:        u_int32_t j, r, s, t;
                    241:        u_int32_t smallwords = TINY_NUMBER >> 6;
                    242:        u_int32_t tinywords = TINY_NUMBER >> 6;
                    243:        time_t time_start, time_stop;
1.11      avsm      244:        u_int32_t i;
                    245:        int ret = 0;
1.1       djm       246:
                    247:        largememory = memory;
                    248:
1.7       djm       249:        if (memory != 0 &&
1.12      djm       250:            (memory < LARGE_MINIMUM || memory > LARGE_MAXIMUM)) {
1.7       djm       251:                error("Invalid memory amount (min %ld, max %ld)",
                    252:                    LARGE_MINIMUM, LARGE_MAXIMUM);
                    253:                return (-1);
                    254:        }
                    255:
1.1       djm       256:        /*
1.2       djm       257:         * Set power to the length in bits of the prime to be generated.
                    258:         * This is changed to 1 less than the desired safe prime moduli p.
                    259:         */
1.1       djm       260:        if (power > TEST_MAXIMUM) {
                    261:                error("Too many bits: %u > %lu", power, TEST_MAXIMUM);
                    262:                return (-1);
                    263:        } else if (power < TEST_MINIMUM) {
                    264:                error("Too few bits: %u < %u", power, TEST_MINIMUM);
                    265:                return (-1);
                    266:        }
                    267:        power--; /* decrement before squaring */
                    268:
                    269:        /*
1.2       djm       270:         * The density of ordinary primes is on the order of 1/bits, so the
                    271:         * density of safe primes should be about (1/bits)**2. Set test range
                    272:         * to something well above bits**2 to be reasonably sure (but not
                    273:         * guaranteed) of catching at least one safe prime.
1.1       djm       274:         */
                    275:        largewords = ((power * power) >> (SHIFT_WORD - TEST_POWER));
                    276:
                    277:        /*
1.2       djm       278:         * Need idea of how much memory is available. We don't have to use all
                    279:         * of it.
1.1       djm       280:         */
                    281:        if (largememory > LARGE_MAXIMUM) {
                    282:                logit("Limited memory: %u MB; limit %lu MB",
                    283:                    largememory, LARGE_MAXIMUM);
                    284:                largememory = LARGE_MAXIMUM;
                    285:        }
                    286:
                    287:        if (largewords <= (largememory << SHIFT_MEGAWORD)) {
                    288:                logit("Increased memory: %u MB; need %u bytes",
                    289:                    largememory, (largewords << SHIFT_BYTE));
                    290:                largewords = (largememory << SHIFT_MEGAWORD);
                    291:        } else if (largememory > 0) {
                    292:                logit("Decreased memory: %u MB; want %u bytes",
                    293:                    largememory, (largewords << SHIFT_BYTE));
                    294:                largewords = (largememory << SHIFT_MEGAWORD);
                    295:        }
                    296:
1.13      djm       297:        TinySieve = xcalloc(tinywords, sizeof(u_int32_t));
1.1       djm       298:        tinybits = tinywords << SHIFT_WORD;
                    299:
1.13      djm       300:        SmallSieve = xcalloc(smallwords, sizeof(u_int32_t));
1.1       djm       301:        smallbits = smallwords << SHIFT_WORD;
                    302:
                    303:        /*
                    304:         * dynamically determine available memory
                    305:         */
                    306:        while ((LargeSieve = calloc(largewords, sizeof(u_int32_t))) == NULL)
                    307:                largewords -= (1L << (SHIFT_MEGAWORD - 2)); /* 1/4 MB chunks */
                    308:
                    309:        largebits = largewords << SHIFT_WORD;
                    310:        largenumbers = largebits * 2;   /* even numbers excluded */
                    311:
                    312:        /* validation check: count the number of primes tried */
                    313:        largetries = 0;
1.19      markus    314:        if ((q = BN_new()) == NULL)
                    315:                fatal("BN_new failed");
1.1       djm       316:
                    317:        /*
1.2       djm       318:         * Generate random starting point for subprime search, or use
                    319:         * specified parameter.
1.1       djm       320:         */
1.19      markus    321:        if ((largebase = BN_new()) == NULL)
                    322:                fatal("BN_new failed");
                    323:        if (start == NULL) {
                    324:                if (BN_rand(largebase, power, 1, 1) == 0)
                    325:                        fatal("BN_rand failed");
                    326:        } else {
                    327:                if (BN_copy(largebase, start) == NULL)
                    328:                        fatal("BN_copy: failed");
                    329:        }
1.1       djm       330:
                    331:        /* ensure odd */
1.19      markus    332:        if (BN_set_bit(largebase, 0) == 0)
                    333:                fatal("BN_set_bit: failed");
1.1       djm       334:
                    335:        time(&time_start);
                    336:
1.2       djm       337:        logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start),
1.1       djm       338:            largenumbers, power);
                    339:        debug2("start point: 0x%s", BN_bn2hex(largebase));
                    340:
                    341:        /*
1.2       djm       342:         * TinySieve
                    343:         */
1.1       djm       344:        for (i = 0; i < tinybits; i++) {
                    345:                if (BIT_TEST(TinySieve, i))
                    346:                        continue; /* 2*i+3 is composite */
                    347:
                    348:                /* The next tiny prime */
                    349:                t = 2 * i + 3;
                    350:
                    351:                /* Mark all multiples of t */
                    352:                for (j = i + t; j < tinybits; j += t)
                    353:                        BIT_SET(TinySieve, j);
                    354:
                    355:                sieve_large(t);
                    356:        }
                    357:
                    358:        /*
1.2       djm       359:         * Start the small block search at the next possible prime. To avoid
                    360:         * fencepost errors, the last pass is skipped.
                    361:         */
1.1       djm       362:        for (smallbase = TINY_NUMBER + 3;
1.12      djm       363:            smallbase < (SMALL_MAXIMUM - TINY_NUMBER);
                    364:            smallbase += TINY_NUMBER) {
1.1       djm       365:                for (i = 0; i < tinybits; i++) {
                    366:                        if (BIT_TEST(TinySieve, i))
                    367:                                continue; /* 2*i+3 is composite */
                    368:
                    369:                        /* The next tiny prime */
                    370:                        t = 2 * i + 3;
                    371:                        r = smallbase % t;
                    372:
                    373:                        if (r == 0) {
                    374:                                s = 0; /* t divides into smallbase exactly */
                    375:                        } else {
                    376:                                /* smallbase+s is first entry divisible by t */
                    377:                                s = t - r;
                    378:                        }
                    379:
                    380:                        /*
                    381:                         * The sieve omits even numbers, so ensure that
                    382:                         * smallbase+s is odd. Then, step through the sieve
                    383:                         * in increments of 2*t
                    384:                         */
                    385:                        if (s & 1)
                    386:                                s += t; /* Make smallbase+s odd, and s even */
                    387:
                    388:                        /* Mark all multiples of 2*t */
                    389:                        for (s /= 2; s < smallbits; s += t)
                    390:                                BIT_SET(SmallSieve, s);
                    391:                }
                    392:
                    393:                /*
1.2       djm       394:                 * SmallSieve
                    395:                 */
1.1       djm       396:                for (i = 0; i < smallbits; i++) {
                    397:                        if (BIT_TEST(SmallSieve, i))
                    398:                                continue; /* 2*i+smallbase is composite */
                    399:
                    400:                        /* The next small prime */
                    401:                        sieve_large((2 * i) + smallbase);
                    402:                }
                    403:
                    404:                memset(SmallSieve, 0, smallwords << SHIFT_BYTE);
                    405:        }
                    406:
                    407:        time(&time_stop);
                    408:
                    409:        logit("%.24s Sieved with %u small primes in %ld seconds",
                    410:            ctime(&time_stop), largetries, (long) (time_stop - time_start));
                    411:
                    412:        for (j = r = 0; j < largebits; j++) {
                    413:                if (BIT_TEST(LargeSieve, j))
                    414:                        continue; /* Definitely composite, skip */
                    415:
                    416:                debug2("test q = largebase+%u", 2 * j);
1.19      markus    417:                if (BN_set_word(q, 2 * j) == 0)
                    418:                        fatal("BN_set_word failed");
                    419:                if (BN_add(q, q, largebase) == 0)
                    420:                        fatal("BN_add failed");
1.21      djm       421:                if (qfileout(out, MODULI_TYPE_SOPHIE_GERMAIN,
                    422:                    MODULI_TESTS_SIEVE, largetries,
                    423:                    (power - 1) /* MSB */, (0), q) == -1) {
1.1       djm       424:                        ret = -1;
                    425:                        break;
                    426:                }
                    427:
                    428:                r++; /* count q */
                    429:        }
                    430:
                    431:        time(&time_stop);
                    432:
1.27      djm       433:        free(LargeSieve);
                    434:        free(SmallSieve);
                    435:        free(TinySieve);
1.1       djm       436:
                    437:        logit("%.24s Found %u candidates", ctime(&time_stop), r);
                    438:
                    439:        return (ret);
                    440: }
                    441:
1.23      dtucker   442: static void
                    443: write_checkpoint(char *cpfile, u_int32_t lineno)
                    444: {
                    445:        FILE *fp;
1.25      djm       446:        char tmp[MAXPATHLEN];
1.23      dtucker   447:        int r;
                    448:
1.25      djm       449:        r = snprintf(tmp, sizeof(tmp), "%s.XXXXXXXXXX", cpfile);
1.23      dtucker   450:        if (r == -1 || r >= MAXPATHLEN) {
                    451:                logit("write_checkpoint: temp pathname too long");
                    452:                return;
                    453:        }
1.25      djm       454:        if ((r = mkstemp(tmp)) == -1) {
                    455:                logit("mkstemp(%s): %s", tmp, strerror(errno));
1.23      dtucker   456:                return;
                    457:        }
                    458:        if ((fp = fdopen(r, "w")) == NULL) {
                    459:                logit("write_checkpoint: fdopen: %s", strerror(errno));
1.29    ! doug      460:                unlink(tmp);
1.23      dtucker   461:                close(r);
                    462:                return;
                    463:        }
                    464:        if (fprintf(fp, "%lu\n", (unsigned long)lineno) > 0 && fclose(fp) == 0
1.25      djm       465:            && rename(tmp, cpfile) == 0)
1.23      dtucker   466:                debug3("wrote checkpoint line %lu to '%s'",
                    467:                    (unsigned long)lineno, cpfile);
                    468:        else
                    469:                logit("failed to write to checkpoint file '%s': %s", cpfile,
                    470:                    strerror(errno));
                    471: }
                    472:
                    473: static unsigned long
                    474: read_checkpoint(char *cpfile)
                    475: {
                    476:        FILE *fp;
                    477:        unsigned long lineno = 0;
                    478:
                    479:        if ((fp = fopen(cpfile, "r")) == NULL)
                    480:                return 0;
                    481:        if (fscanf(fp, "%lu\n", &lineno) < 1)
                    482:                logit("Failed to load checkpoint from '%s'", cpfile);
                    483:        else
                    484:                logit("Loaded checkpoint from '%s' line %lu", cpfile, lineno);
                    485:        fclose(fp);
                    486:        return lineno;
                    487: }
                    488:
1.28      dtucker   489: static unsigned long
                    490: count_lines(FILE *f)
                    491: {
                    492:        unsigned long count = 0;
                    493:        char lp[QLINESIZE + 1];
                    494:
                    495:        if (fseek(f, 0, SEEK_SET) != 0) {
                    496:                debug("input file is not seekable");
                    497:                return ULONG_MAX;
                    498:        }
                    499:        while (fgets(lp, QLINESIZE + 1, f) != NULL)
                    500:                count++;
                    501:        rewind(f);
                    502:        debug("input file has %lu lines", count);
                    503:        return count;
                    504: }
                    505:
                    506: static char *
                    507: fmt_time(time_t seconds)
                    508: {
                    509:        int day, hr, min;
                    510:        static char buf[128];
                    511:
                    512:        min = (seconds / 60) % 60;
                    513:        hr = (seconds / 60 / 60) % 24;
                    514:        day = seconds / 60 / 60 / 24;
                    515:        if (day > 0)
                    516:                snprintf(buf, sizeof buf, "%dd %d:%02d", day, hr, min);
                    517:        else
                    518:                snprintf(buf, sizeof buf, "%d:%02d", hr, min);
                    519:        return buf;
                    520: }
                    521:
                    522: static void
                    523: print_progress(unsigned long start_lineno, unsigned long current_lineno,
                    524:     unsigned long end_lineno)
                    525: {
                    526:        static time_t time_start, time_prev;
                    527:        time_t time_now, elapsed;
                    528:        unsigned long num_to_process, processed, remaining, percent, eta;
                    529:        double time_per_line;
                    530:        char *eta_str;
                    531:
                    532:        time_now = monotime();
                    533:        if (time_start == 0) {
                    534:                time_start = time_prev = time_now;
                    535:                return;
                    536:        }
                    537:        /* print progress after 1m then once per 5m */
                    538:        if (time_now - time_prev < 5 * 60)
                    539:                return;
                    540:        time_prev = time_now;
                    541:        elapsed = time_now - time_start;
                    542:        processed = current_lineno - start_lineno;
                    543:        remaining = end_lineno - current_lineno;
                    544:        num_to_process = end_lineno - start_lineno;
                    545:        time_per_line = (double)elapsed / processed;
                    546:        /* if we don't know how many we're processing just report count+time */
                    547:        time(&time_now);
                    548:        if (end_lineno == ULONG_MAX) {
                    549:                logit("%.24s processed %lu in %s", ctime(&time_now),
                    550:                    processed, fmt_time(elapsed));
                    551:                return;
                    552:        }
                    553:        percent = 100 * processed / num_to_process;
                    554:        eta = time_per_line * remaining;
                    555:        eta_str = xstrdup(fmt_time(eta));
                    556:        logit("%.24s processed %lu of %lu (%lu%%) in %s, ETA %s",
                    557:            ctime(&time_now), processed, num_to_process, percent,
                    558:            fmt_time(elapsed), eta_str);
                    559:        free(eta_str);
                    560: }
                    561:
1.1       djm       562: /*
                    563:  * perform a Miller-Rabin primality test
                    564:  * on the list of candidates
                    565:  * (checking both q and p)
                    566:  * The result is a list of so-call "safe" primes
                    567:  */
                    568: int
1.23      dtucker   569: prime_test(FILE *in, FILE *out, u_int32_t trials, u_int32_t generator_wanted,
1.26      dtucker   570:     char *checkpoint_file, unsigned long start_lineno, unsigned long num_lines)
1.1       djm       571: {
                    572:        BIGNUM *q, *p, *a;
                    573:        BN_CTX *ctx;
                    574:        char *cp, *lp;
                    575:        u_int32_t count_in = 0, count_out = 0, count_possible = 0;
                    576:        u_int32_t generator_known, in_tests, in_tries, in_type, in_size;
1.26      dtucker   577:        unsigned long last_processed = 0, end_lineno;
1.1       djm       578:        time_t time_start, time_stop;
                    579:        int res;
1.7       djm       580:
                    581:        if (trials < TRIAL_MINIMUM) {
                    582:                error("Minimum primality trials is %d", TRIAL_MINIMUM);
                    583:                return (-1);
                    584:        }
1.1       djm       585:
1.28      dtucker   586:        if (num_lines == 0)
                    587:                end_lineno = count_lines(in);
                    588:        else
                    589:                end_lineno = start_lineno + num_lines;
                    590:
1.1       djm       591:        time(&time_start);
                    592:
1.19      markus    593:        if ((p = BN_new()) == NULL)
                    594:                fatal("BN_new failed");
                    595:        if ((q = BN_new()) == NULL)
                    596:                fatal("BN_new failed");
                    597:        if ((ctx = BN_CTX_new()) == NULL)
                    598:                fatal("BN_CTX_new failed");
1.1       djm       599:
                    600:        debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
                    601:            ctime(&time_start), trials, generator_wanted);
                    602:
1.23      dtucker   603:        if (checkpoint_file != NULL)
                    604:                last_processed = read_checkpoint(checkpoint_file);
1.28      dtucker   605:        last_processed = start_lineno = MAX(last_processed, start_lineno);
                    606:        if (end_lineno == ULONG_MAX)
                    607:                debug("process from line %lu from pipe", last_processed);
1.26      dtucker   608:        else
1.28      dtucker   609:                debug("process from line %lu to line %lu", last_processed,
                    610:                    end_lineno);
1.23      dtucker   611:
1.1       djm       612:        res = 0;
                    613:        lp = xmalloc(QLINESIZE + 1);
1.26      dtucker   614:        while (fgets(lp, QLINESIZE + 1, in) != NULL && count_in < end_lineno) {
1.1       djm       615:                count_in++;
1.28      dtucker   616:                if (count_in <= last_processed) {
                    617:                        debug3("skipping line %u, before checkpoint or "
                    618:                            "specified start line", count_in);
                    619:                        continue;
                    620:                }
                    621:                if (checkpoint_file != NULL)
1.23      dtucker   622:                        write_checkpoint(checkpoint_file, count_in);
1.28      dtucker   623:                print_progress(start_lineno, count_in, end_lineno);
1.20      ray       624:                if (strlen(lp) < 14 || *lp == '!' || *lp == '#') {
1.1       djm       625:                        debug2("%10u: comment or short line", count_in);
                    626:                        continue;
                    627:                }
                    628:
                    629:                /* XXX - fragile parser */
                    630:                /* time */
                    631:                cp = &lp[14];   /* (skip) */
                    632:
                    633:                /* type */
                    634:                in_type = strtoul(cp, &cp, 10);
                    635:
                    636:                /* tests */
                    637:                in_tests = strtoul(cp, &cp, 10);
                    638:
1.21      djm       639:                if (in_tests & MODULI_TESTS_COMPOSITE) {
1.1       djm       640:                        debug2("%10u: known composite", count_in);
                    641:                        continue;
                    642:                }
1.5       djm       643:
1.1       djm       644:                /* tries */
                    645:                in_tries = strtoul(cp, &cp, 10);
                    646:
                    647:                /* size (most significant bit) */
                    648:                in_size = strtoul(cp, &cp, 10);
                    649:
                    650:                /* generator (hex) */
                    651:                generator_known = strtoul(cp, &cp, 16);
                    652:
                    653:                /* Skip white space */
                    654:                cp += strspn(cp, " ");
                    655:
                    656:                /* modulus (hex) */
                    657:                switch (in_type) {
1.21      djm       658:                case MODULI_TYPE_SOPHIE_GERMAIN:
1.6       djm       659:                        debug2("%10u: (%u) Sophie-Germain", count_in, in_type);
1.1       djm       660:                        a = q;
1.19      markus    661:                        if (BN_hex2bn(&a, cp) == 0)
                    662:                                fatal("BN_hex2bn failed");
1.1       djm       663:                        /* p = 2*q + 1 */
1.19      markus    664:                        if (BN_lshift(p, q, 1) == 0)
                    665:                                fatal("BN_lshift failed");
                    666:                        if (BN_add_word(p, 1) == 0)
                    667:                                fatal("BN_add_word failed");
1.1       djm       668:                        in_size += 1;
                    669:                        generator_known = 0;
                    670:                        break;
1.21      djm       671:                case MODULI_TYPE_UNSTRUCTURED:
                    672:                case MODULI_TYPE_SAFE:
                    673:                case MODULI_TYPE_SCHNORR:
                    674:                case MODULI_TYPE_STRONG:
                    675:                case MODULI_TYPE_UNKNOWN:
1.1       djm       676:                        debug2("%10u: (%u)", count_in, in_type);
                    677:                        a = p;
1.19      markus    678:                        if (BN_hex2bn(&a, cp) == 0)
                    679:                                fatal("BN_hex2bn failed");
1.1       djm       680:                        /* q = (p-1) / 2 */
1.19      markus    681:                        if (BN_rshift(q, p, 1) == 0)
                    682:                                fatal("BN_rshift failed");
1.1       djm       683:                        break;
1.5       djm       684:                default:
                    685:                        debug2("Unknown prime type");
                    686:                        break;
1.1       djm       687:                }
                    688:
                    689:                /*
                    690:                 * due to earlier inconsistencies in interpretation, check
                    691:                 * the proposed bit size.
                    692:                 */
1.11      avsm      693:                if ((u_int32_t)BN_num_bits(p) != (in_size + 1)) {
1.1       djm       694:                        debug2("%10u: bit size %u mismatch", count_in, in_size);
                    695:                        continue;
                    696:                }
                    697:                if (in_size < QSIZE_MINIMUM) {
                    698:                        debug2("%10u: bit size %u too short", count_in, in_size);
                    699:                        continue;
                    700:                }
                    701:
1.21      djm       702:                if (in_tests & MODULI_TESTS_MILLER_RABIN)
1.1       djm       703:                        in_tries += trials;
                    704:                else
                    705:                        in_tries = trials;
1.5       djm       706:
1.1       djm       707:                /*
                    708:                 * guess unknown generator
                    709:                 */
                    710:                if (generator_known == 0) {
                    711:                        if (BN_mod_word(p, 24) == 11)
                    712:                                generator_known = 2;
                    713:                        else if (BN_mod_word(p, 12) == 5)
                    714:                                generator_known = 3;
                    715:                        else {
                    716:                                u_int32_t r = BN_mod_word(p, 10);
                    717:
1.5       djm       718:                                if (r == 3 || r == 7)
1.1       djm       719:                                        generator_known = 5;
                    720:                        }
                    721:                }
                    722:                /*
                    723:                 * skip tests when desired generator doesn't match
                    724:                 */
                    725:                if (generator_wanted > 0 &&
                    726:                    generator_wanted != generator_known) {
                    727:                        debug2("%10u: generator %d != %d",
                    728:                            count_in, generator_known, generator_wanted);
1.4       dtucker   729:                        continue;
                    730:                }
                    731:
                    732:                /*
                    733:                 * Primes with no known generator are useless for DH, so
                    734:                 * skip those.
                    735:                 */
                    736:                if (generator_known == 0) {
                    737:                        debug2("%10u: no known generator", count_in);
1.1       djm       738:                        continue;
                    739:                }
                    740:
                    741:                count_possible++;
                    742:
                    743:                /*
1.2       djm       744:                 * The (1/4)^N performance bound on Miller-Rabin is
                    745:                 * extremely pessimistic, so don't spend a lot of time
                    746:                 * really verifying that q is prime until after we know
                    747:                 * that p is also prime. A single pass will weed out the
1.1       djm       748:                 * vast majority of composite q's.
                    749:                 */
1.22      djm       750:                if (BN_is_prime_ex(q, 1, ctx, NULL) <= 0) {
1.5       djm       751:                        debug("%10u: q failed first possible prime test",
1.1       djm       752:                            count_in);
                    753:                        continue;
                    754:                }
1.2       djm       755:
1.1       djm       756:                /*
1.2       djm       757:                 * q is possibly prime, so go ahead and really make sure
                    758:                 * that p is prime. If it is, then we can go back and do
                    759:                 * the same for q. If p is composite, chances are that
1.1       djm       760:                 * will show up on the first Rabin-Miller iteration so it
                    761:                 * doesn't hurt to specify a high iteration count.
                    762:                 */
1.22      djm       763:                if (!BN_is_prime_ex(p, trials, ctx, NULL)) {
1.5       djm       764:                        debug("%10u: p is not prime", count_in);
1.1       djm       765:                        continue;
                    766:                }
                    767:                debug("%10u: p is almost certainly prime", count_in);
                    768:
                    769:                /* recheck q more rigorously */
1.22      djm       770:                if (!BN_is_prime_ex(q, trials - 1, ctx, NULL)) {
1.1       djm       771:                        debug("%10u: q is not prime", count_in);
                    772:                        continue;
                    773:                }
                    774:                debug("%10u: q is almost certainly prime", count_in);
                    775:
1.21      djm       776:                if (qfileout(out, MODULI_TYPE_SAFE,
                    777:                    in_tests | MODULI_TESTS_MILLER_RABIN,
1.1       djm       778:                    in_tries, in_size, generator_known, p)) {
                    779:                        res = -1;
                    780:                        break;
                    781:                }
                    782:
                    783:                count_out++;
                    784:        }
                    785:
                    786:        time(&time_stop);
1.27      djm       787:        free(lp);
1.1       djm       788:        BN_free(p);
                    789:        BN_free(q);
                    790:        BN_CTX_free(ctx);
1.23      dtucker   791:
                    792:        if (checkpoint_file != NULL)
                    793:                unlink(checkpoint_file);
1.1       djm       794:
                    795:        logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
1.2       djm       796:            ctime(&time_stop), count_out, count_possible,
1.1       djm       797:            (long) (time_stop - time_start));
                    798:
                    799:        return (res);
                    800: }