[BACK]Return to moduli.c CVS log [TXT][DIR] Up to [local] / src / usr.bin / ssh

Annotation of src/usr.bin/ssh/moduli.c, Revision 1.30

1.30    ! deraadt     1: /* $OpenBSD: moduli.c,v 1.29 2014/08/21 01:08:52 doug Exp $ */
1.1       djm         2: /*
                      3:  * Copyright 1994 Phil Karn <karn@qualcomm.com>
                      4:  * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com>
                      5:  * Copyright 2000 Niels Provos <provos@citi.umich.edu>
                      6:  * All rights reserved.
                      7:  *
                      8:  * Redistribution and use in source and binary forms, with or without
                      9:  * modification, are permitted provided that the following conditions
                     10:  * are met:
                     11:  * 1. Redistributions of source code must retain the above copyright
                     12:  *    notice, this list of conditions and the following disclaimer.
                     13:  * 2. Redistributions in binary form must reproduce the above copyright
                     14:  *    notice, this list of conditions and the following disclaimer in the
                     15:  *    documentation and/or other materials provided with the distribution.
                     16:  *
                     17:  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
                     18:  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
                     19:  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
                     20:  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
                     21:  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
                     22:  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
                     23:  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
                     24:  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
                     25:  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
                     26:  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
                     27:  */
                     28:
                     29: /*
                     30:  * Two-step process to generate safe primes for DHGEX
                     31:  *
                     32:  *  Sieve candidates for "safe" primes,
                     33:  *  suitable for use as Diffie-Hellman moduli;
                     34:  *  that is, where q = (p-1)/2 is also prime.
                     35:  *
                     36:  * First step: generate candidate primes (memory intensive)
                     37:  * Second step: test primes' safety (processor intensive)
                     38:  */
                     39:
1.30    ! deraadt    40: #include <sys/param.h> /* MAX */
1.14      stevesk    41: #include <sys/types.h>
                     42:
                     43: #include <openssl/bn.h>
1.21      djm        44: #include <openssl/dh.h>
1.14      stevesk    45:
1.24      stsp       46: #include <errno.h>
1.17      stevesk    47: #include <stdio.h>
1.16      stevesk    48: #include <stdlib.h>
1.15      stevesk    49: #include <string.h>
1.18      deraadt    50: #include <stdarg.h>
1.14      stevesk    51: #include <time.h>
1.23      dtucker    52: #include <unistd.h>
1.30    ! deraadt    53: #include <limits.h>
1.14      stevesk    54:
1.1       djm        55: #include "xmalloc.h"
1.21      djm        56: #include "dh.h"
1.1       djm        57: #include "log.h"
1.28      dtucker    58: #include "misc.h"
1.1       djm        59:
                     60: /*
                     61:  * File output defines
                     62:  */
                     63:
                     64: /* need line long enough for largest moduli plus headers */
1.9       deraadt    65: #define QLINESIZE              (100+8192)
1.1       djm        66:
1.5       djm        67: /*
                     68:  * Size: decimal.
1.1       djm        69:  * Specifies the number of the most significant bit (0 to M).
1.5       djm        70:  * WARNING: internally, usually 1 to N.
1.1       djm        71:  */
1.9       deraadt    72: #define QSIZE_MINIMUM          (511)
1.1       djm        73:
                     74: /*
                     75:  * Prime sieving defines
                     76:  */
                     77:
                     78: /* Constant: assuming 8 bit bytes and 32 bit words */
1.9       deraadt    79: #define SHIFT_BIT      (3)
                     80: #define SHIFT_BYTE     (2)
                     81: #define SHIFT_WORD     (SHIFT_BIT+SHIFT_BYTE)
                     82: #define SHIFT_MEGABYTE (20)
                     83: #define SHIFT_MEGAWORD (SHIFT_MEGABYTE-SHIFT_BYTE)
1.1       djm        84:
                     85: /*
1.7       djm        86:  * Using virtual memory can cause thrashing.  This should be the largest
                     87:  * number that is supported without a large amount of disk activity --
                     88:  * that would increase the run time from hours to days or weeks!
                     89:  */
1.9       deraadt    90: #define LARGE_MINIMUM  (8UL)   /* megabytes */
1.7       djm        91:
                     92: /*
                     93:  * Do not increase this number beyond the unsigned integer bit size.
                     94:  * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits).
                     95:  */
1.9       deraadt    96: #define LARGE_MAXIMUM  (127UL) /* megabytes */
1.7       djm        97:
                     98: /*
1.1       djm        99:  * Constant: when used with 32-bit integers, the largest sieve prime
                    100:  * has to be less than 2**32.
                    101:  */
1.9       deraadt   102: #define SMALL_MAXIMUM  (0xffffffffUL)
1.1       djm       103:
                    104: /* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
1.9       deraadt   105: #define TINY_NUMBER    (1UL<<16)
1.1       djm       106:
                    107: /* Ensure enough bit space for testing 2*q. */
1.12      djm       108: #define TEST_MAXIMUM   (1UL<<16)
                    109: #define TEST_MINIMUM   (QSIZE_MINIMUM + 1)
                    110: /* real TEST_MINIMUM   (1UL << (SHIFT_WORD - TEST_POWER)) */
                    111: #define TEST_POWER     (3)     /* 2**n, n < SHIFT_WORD */
1.1       djm       112:
                    113: /* bit operations on 32-bit words */
1.12      djm       114: #define BIT_CLEAR(a,n) ((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
                    115: #define BIT_SET(a,n)   ((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
                    116: #define BIT_TEST(a,n)  ((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))
1.1       djm       117:
                    118: /*
                    119:  * Prime testing defines
                    120:  */
                    121:
1.7       djm       122: /* Minimum number of primality tests to perform */
1.12      djm       123: #define TRIAL_MINIMUM  (4)
1.7       djm       124:
1.1       djm       125: /*
                    126:  * Sieving data (XXX - move to struct)
                    127:  */
                    128:
                    129: /* sieve 2**16 */
                    130: static u_int32_t *TinySieve, tinybits;
                    131:
                    132: /* sieve 2**30 in 2**16 parts */
                    133: static u_int32_t *SmallSieve, smallbits, smallbase;
                    134:
                    135: /* sieve relative to the initial value */
                    136: static u_int32_t *LargeSieve, largewords, largetries, largenumbers;
                    137: static u_int32_t largebits, largememory;       /* megabytes */
                    138: static BIGNUM *largebase;
                    139:
1.11      avsm      140: int gen_candidates(FILE *, u_int32_t, u_int32_t, BIGNUM *);
1.26      dtucker   141: int prime_test(FILE *, FILE *, u_int32_t, u_int32_t, char *, unsigned long,
                    142:     unsigned long);
1.1       djm       143:
                    144: /*
                    145:  * print moduli out in consistent form,
                    146:  */
                    147: static int
                    148: qfileout(FILE * ofile, u_int32_t otype, u_int32_t otests, u_int32_t otries,
                    149:     u_int32_t osize, u_int32_t ogenerator, BIGNUM * omodulus)
                    150: {
                    151:        struct tm *gtm;
                    152:        time_t time_now;
                    153:        int res;
                    154:
                    155:        time(&time_now);
                    156:        gtm = gmtime(&time_now);
1.2       djm       157:
1.1       djm       158:        res = fprintf(ofile, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
                    159:            gtm->tm_year + 1900, gtm->tm_mon + 1, gtm->tm_mday,
                    160:            gtm->tm_hour, gtm->tm_min, gtm->tm_sec,
                    161:            otype, otests, otries, osize, ogenerator);
                    162:
                    163:        if (res < 0)
                    164:                return (-1);
                    165:
                    166:        if (BN_print_fp(ofile, omodulus) < 1)
                    167:                return (-1);
                    168:
                    169:        res = fprintf(ofile, "\n");
                    170:        fflush(ofile);
                    171:
                    172:        return (res > 0 ? 0 : -1);
                    173: }
                    174:
                    175:
                    176: /*
                    177:  ** Sieve p's and q's with small factors
                    178:  */
                    179: static void
                    180: sieve_large(u_int32_t s)
                    181: {
                    182:        u_int32_t r, u;
                    183:
1.5       djm       184:        debug3("sieve_large %u", s);
1.1       djm       185:        largetries++;
                    186:        /* r = largebase mod s */
                    187:        r = BN_mod_word(largebase, s);
                    188:        if (r == 0)
                    189:                u = 0; /* s divides into largebase exactly */
                    190:        else
                    191:                u = s - r; /* largebase+u is first entry divisible by s */
                    192:
                    193:        if (u < largebits * 2) {
                    194:                /*
                    195:                 * The sieve omits p's and q's divisible by 2, so ensure that
                    196:                 * largebase+u is odd. Then, step through the sieve in
                    197:                 * increments of 2*s
                    198:                 */
                    199:                if (u & 0x1)
                    200:                        u += s; /* Make largebase+u odd, and u even */
                    201:
                    202:                /* Mark all multiples of 2*s */
                    203:                for (u /= 2; u < largebits; u += s)
                    204:                        BIT_SET(LargeSieve, u);
                    205:        }
                    206:
                    207:        /* r = p mod s */
                    208:        r = (2 * r + 1) % s;
                    209:        if (r == 0)
                    210:                u = 0; /* s divides p exactly */
                    211:        else
                    212:                u = s - r; /* p+u is first entry divisible by s */
                    213:
                    214:        if (u < largebits * 4) {
                    215:                /*
                    216:                 * The sieve omits p's divisible by 4, so ensure that
                    217:                 * largebase+u is not. Then, step through the sieve in
                    218:                 * increments of 4*s
                    219:                 */
                    220:                while (u & 0x3) {
                    221:                        if (SMALL_MAXIMUM - u < s)
                    222:                                return;
                    223:                        u += s;
                    224:                }
                    225:
                    226:                /* Mark all multiples of 4*s */
                    227:                for (u /= 4; u < largebits; u += s)
                    228:                        BIT_SET(LargeSieve, u);
                    229:        }
                    230: }
                    231:
                    232: /*
1.6       djm       233:  * list candidates for Sophie-Germain primes (where q = (p-1)/2)
1.1       djm       234:  * to standard output.
                    235:  * The list is checked against small known primes (less than 2**30).
                    236:  */
                    237: int
1.11      avsm      238: gen_candidates(FILE *out, u_int32_t memory, u_int32_t power, BIGNUM *start)
1.1       djm       239: {
                    240:        BIGNUM *q;
                    241:        u_int32_t j, r, s, t;
                    242:        u_int32_t smallwords = TINY_NUMBER >> 6;
                    243:        u_int32_t tinywords = TINY_NUMBER >> 6;
                    244:        time_t time_start, time_stop;
1.11      avsm      245:        u_int32_t i;
                    246:        int ret = 0;
1.1       djm       247:
                    248:        largememory = memory;
                    249:
1.7       djm       250:        if (memory != 0 &&
1.12      djm       251:            (memory < LARGE_MINIMUM || memory > LARGE_MAXIMUM)) {
1.7       djm       252:                error("Invalid memory amount (min %ld, max %ld)",
                    253:                    LARGE_MINIMUM, LARGE_MAXIMUM);
                    254:                return (-1);
                    255:        }
                    256:
1.1       djm       257:        /*
1.2       djm       258:         * Set power to the length in bits of the prime to be generated.
                    259:         * This is changed to 1 less than the desired safe prime moduli p.
                    260:         */
1.1       djm       261:        if (power > TEST_MAXIMUM) {
                    262:                error("Too many bits: %u > %lu", power, TEST_MAXIMUM);
                    263:                return (-1);
                    264:        } else if (power < TEST_MINIMUM) {
                    265:                error("Too few bits: %u < %u", power, TEST_MINIMUM);
                    266:                return (-1);
                    267:        }
                    268:        power--; /* decrement before squaring */
                    269:
                    270:        /*
1.2       djm       271:         * The density of ordinary primes is on the order of 1/bits, so the
                    272:         * density of safe primes should be about (1/bits)**2. Set test range
                    273:         * to something well above bits**2 to be reasonably sure (but not
                    274:         * guaranteed) of catching at least one safe prime.
1.1       djm       275:         */
                    276:        largewords = ((power * power) >> (SHIFT_WORD - TEST_POWER));
                    277:
                    278:        /*
1.2       djm       279:         * Need idea of how much memory is available. We don't have to use all
                    280:         * of it.
1.1       djm       281:         */
                    282:        if (largememory > LARGE_MAXIMUM) {
                    283:                logit("Limited memory: %u MB; limit %lu MB",
                    284:                    largememory, LARGE_MAXIMUM);
                    285:                largememory = LARGE_MAXIMUM;
                    286:        }
                    287:
                    288:        if (largewords <= (largememory << SHIFT_MEGAWORD)) {
                    289:                logit("Increased memory: %u MB; need %u bytes",
                    290:                    largememory, (largewords << SHIFT_BYTE));
                    291:                largewords = (largememory << SHIFT_MEGAWORD);
                    292:        } else if (largememory > 0) {
                    293:                logit("Decreased memory: %u MB; want %u bytes",
                    294:                    largememory, (largewords << SHIFT_BYTE));
                    295:                largewords = (largememory << SHIFT_MEGAWORD);
                    296:        }
                    297:
1.13      djm       298:        TinySieve = xcalloc(tinywords, sizeof(u_int32_t));
1.1       djm       299:        tinybits = tinywords << SHIFT_WORD;
                    300:
1.13      djm       301:        SmallSieve = xcalloc(smallwords, sizeof(u_int32_t));
1.1       djm       302:        smallbits = smallwords << SHIFT_WORD;
                    303:
                    304:        /*
                    305:         * dynamically determine available memory
                    306:         */
                    307:        while ((LargeSieve = calloc(largewords, sizeof(u_int32_t))) == NULL)
                    308:                largewords -= (1L << (SHIFT_MEGAWORD - 2)); /* 1/4 MB chunks */
                    309:
                    310:        largebits = largewords << SHIFT_WORD;
                    311:        largenumbers = largebits * 2;   /* even numbers excluded */
                    312:
                    313:        /* validation check: count the number of primes tried */
                    314:        largetries = 0;
1.19      markus    315:        if ((q = BN_new()) == NULL)
                    316:                fatal("BN_new failed");
1.1       djm       317:
                    318:        /*
1.2       djm       319:         * Generate random starting point for subprime search, or use
                    320:         * specified parameter.
1.1       djm       321:         */
1.19      markus    322:        if ((largebase = BN_new()) == NULL)
                    323:                fatal("BN_new failed");
                    324:        if (start == NULL) {
                    325:                if (BN_rand(largebase, power, 1, 1) == 0)
                    326:                        fatal("BN_rand failed");
                    327:        } else {
                    328:                if (BN_copy(largebase, start) == NULL)
                    329:                        fatal("BN_copy: failed");
                    330:        }
1.1       djm       331:
                    332:        /* ensure odd */
1.19      markus    333:        if (BN_set_bit(largebase, 0) == 0)
                    334:                fatal("BN_set_bit: failed");
1.1       djm       335:
                    336:        time(&time_start);
                    337:
1.2       djm       338:        logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start),
1.1       djm       339:            largenumbers, power);
                    340:        debug2("start point: 0x%s", BN_bn2hex(largebase));
                    341:
                    342:        /*
1.2       djm       343:         * TinySieve
                    344:         */
1.1       djm       345:        for (i = 0; i < tinybits; i++) {
                    346:                if (BIT_TEST(TinySieve, i))
                    347:                        continue; /* 2*i+3 is composite */
                    348:
                    349:                /* The next tiny prime */
                    350:                t = 2 * i + 3;
                    351:
                    352:                /* Mark all multiples of t */
                    353:                for (j = i + t; j < tinybits; j += t)
                    354:                        BIT_SET(TinySieve, j);
                    355:
                    356:                sieve_large(t);
                    357:        }
                    358:
                    359:        /*
1.2       djm       360:         * Start the small block search at the next possible prime. To avoid
                    361:         * fencepost errors, the last pass is skipped.
                    362:         */
1.1       djm       363:        for (smallbase = TINY_NUMBER + 3;
1.12      djm       364:            smallbase < (SMALL_MAXIMUM - TINY_NUMBER);
                    365:            smallbase += TINY_NUMBER) {
1.1       djm       366:                for (i = 0; i < tinybits; i++) {
                    367:                        if (BIT_TEST(TinySieve, i))
                    368:                                continue; /* 2*i+3 is composite */
                    369:
                    370:                        /* The next tiny prime */
                    371:                        t = 2 * i + 3;
                    372:                        r = smallbase % t;
                    373:
                    374:                        if (r == 0) {
                    375:                                s = 0; /* t divides into smallbase exactly */
                    376:                        } else {
                    377:                                /* smallbase+s is first entry divisible by t */
                    378:                                s = t - r;
                    379:                        }
                    380:
                    381:                        /*
                    382:                         * The sieve omits even numbers, so ensure that
                    383:                         * smallbase+s is odd. Then, step through the sieve
                    384:                         * in increments of 2*t
                    385:                         */
                    386:                        if (s & 1)
                    387:                                s += t; /* Make smallbase+s odd, and s even */
                    388:
                    389:                        /* Mark all multiples of 2*t */
                    390:                        for (s /= 2; s < smallbits; s += t)
                    391:                                BIT_SET(SmallSieve, s);
                    392:                }
                    393:
                    394:                /*
1.2       djm       395:                 * SmallSieve
                    396:                 */
1.1       djm       397:                for (i = 0; i < smallbits; i++) {
                    398:                        if (BIT_TEST(SmallSieve, i))
                    399:                                continue; /* 2*i+smallbase is composite */
                    400:
                    401:                        /* The next small prime */
                    402:                        sieve_large((2 * i) + smallbase);
                    403:                }
                    404:
                    405:                memset(SmallSieve, 0, smallwords << SHIFT_BYTE);
                    406:        }
                    407:
                    408:        time(&time_stop);
                    409:
                    410:        logit("%.24s Sieved with %u small primes in %ld seconds",
                    411:            ctime(&time_stop), largetries, (long) (time_stop - time_start));
                    412:
                    413:        for (j = r = 0; j < largebits; j++) {
                    414:                if (BIT_TEST(LargeSieve, j))
                    415:                        continue; /* Definitely composite, skip */
                    416:
                    417:                debug2("test q = largebase+%u", 2 * j);
1.19      markus    418:                if (BN_set_word(q, 2 * j) == 0)
                    419:                        fatal("BN_set_word failed");
                    420:                if (BN_add(q, q, largebase) == 0)
                    421:                        fatal("BN_add failed");
1.21      djm       422:                if (qfileout(out, MODULI_TYPE_SOPHIE_GERMAIN,
                    423:                    MODULI_TESTS_SIEVE, largetries,
                    424:                    (power - 1) /* MSB */, (0), q) == -1) {
1.1       djm       425:                        ret = -1;
                    426:                        break;
                    427:                }
                    428:
                    429:                r++; /* count q */
                    430:        }
                    431:
                    432:        time(&time_stop);
                    433:
1.27      djm       434:        free(LargeSieve);
                    435:        free(SmallSieve);
                    436:        free(TinySieve);
1.1       djm       437:
                    438:        logit("%.24s Found %u candidates", ctime(&time_stop), r);
                    439:
                    440:        return (ret);
                    441: }
                    442:
1.23      dtucker   443: static void
                    444: write_checkpoint(char *cpfile, u_int32_t lineno)
                    445: {
                    446:        FILE *fp;
1.30    ! deraadt   447:        char tmp[PATH_MAX];
1.23      dtucker   448:        int r;
                    449:
1.25      djm       450:        r = snprintf(tmp, sizeof(tmp), "%s.XXXXXXXXXX", cpfile);
1.30    ! deraadt   451:        if (r == -1 || r >= PATH_MAX) {
1.23      dtucker   452:                logit("write_checkpoint: temp pathname too long");
                    453:                return;
                    454:        }
1.25      djm       455:        if ((r = mkstemp(tmp)) == -1) {
                    456:                logit("mkstemp(%s): %s", tmp, strerror(errno));
1.23      dtucker   457:                return;
                    458:        }
                    459:        if ((fp = fdopen(r, "w")) == NULL) {
                    460:                logit("write_checkpoint: fdopen: %s", strerror(errno));
1.29      doug      461:                unlink(tmp);
1.23      dtucker   462:                close(r);
                    463:                return;
                    464:        }
                    465:        if (fprintf(fp, "%lu\n", (unsigned long)lineno) > 0 && fclose(fp) == 0
1.25      djm       466:            && rename(tmp, cpfile) == 0)
1.23      dtucker   467:                debug3("wrote checkpoint line %lu to '%s'",
                    468:                    (unsigned long)lineno, cpfile);
                    469:        else
                    470:                logit("failed to write to checkpoint file '%s': %s", cpfile,
                    471:                    strerror(errno));
                    472: }
                    473:
                    474: static unsigned long
                    475: read_checkpoint(char *cpfile)
                    476: {
                    477:        FILE *fp;
                    478:        unsigned long lineno = 0;
                    479:
                    480:        if ((fp = fopen(cpfile, "r")) == NULL)
                    481:                return 0;
                    482:        if (fscanf(fp, "%lu\n", &lineno) < 1)
                    483:                logit("Failed to load checkpoint from '%s'", cpfile);
                    484:        else
                    485:                logit("Loaded checkpoint from '%s' line %lu", cpfile, lineno);
                    486:        fclose(fp);
                    487:        return lineno;
                    488: }
                    489:
1.28      dtucker   490: static unsigned long
                    491: count_lines(FILE *f)
                    492: {
                    493:        unsigned long count = 0;
                    494:        char lp[QLINESIZE + 1];
                    495:
                    496:        if (fseek(f, 0, SEEK_SET) != 0) {
                    497:                debug("input file is not seekable");
                    498:                return ULONG_MAX;
                    499:        }
                    500:        while (fgets(lp, QLINESIZE + 1, f) != NULL)
                    501:                count++;
                    502:        rewind(f);
                    503:        debug("input file has %lu lines", count);
                    504:        return count;
                    505: }
                    506:
                    507: static char *
                    508: fmt_time(time_t seconds)
                    509: {
                    510:        int day, hr, min;
                    511:        static char buf[128];
                    512:
                    513:        min = (seconds / 60) % 60;
                    514:        hr = (seconds / 60 / 60) % 24;
                    515:        day = seconds / 60 / 60 / 24;
                    516:        if (day > 0)
                    517:                snprintf(buf, sizeof buf, "%dd %d:%02d", day, hr, min);
                    518:        else
                    519:                snprintf(buf, sizeof buf, "%d:%02d", hr, min);
                    520:        return buf;
                    521: }
                    522:
                    523: static void
                    524: print_progress(unsigned long start_lineno, unsigned long current_lineno,
                    525:     unsigned long end_lineno)
                    526: {
                    527:        static time_t time_start, time_prev;
                    528:        time_t time_now, elapsed;
                    529:        unsigned long num_to_process, processed, remaining, percent, eta;
                    530:        double time_per_line;
                    531:        char *eta_str;
                    532:
                    533:        time_now = monotime();
                    534:        if (time_start == 0) {
                    535:                time_start = time_prev = time_now;
                    536:                return;
                    537:        }
                    538:        /* print progress after 1m then once per 5m */
                    539:        if (time_now - time_prev < 5 * 60)
                    540:                return;
                    541:        time_prev = time_now;
                    542:        elapsed = time_now - time_start;
                    543:        processed = current_lineno - start_lineno;
                    544:        remaining = end_lineno - current_lineno;
                    545:        num_to_process = end_lineno - start_lineno;
                    546:        time_per_line = (double)elapsed / processed;
                    547:        /* if we don't know how many we're processing just report count+time */
                    548:        time(&time_now);
                    549:        if (end_lineno == ULONG_MAX) {
                    550:                logit("%.24s processed %lu in %s", ctime(&time_now),
                    551:                    processed, fmt_time(elapsed));
                    552:                return;
                    553:        }
                    554:        percent = 100 * processed / num_to_process;
                    555:        eta = time_per_line * remaining;
                    556:        eta_str = xstrdup(fmt_time(eta));
                    557:        logit("%.24s processed %lu of %lu (%lu%%) in %s, ETA %s",
                    558:            ctime(&time_now), processed, num_to_process, percent,
                    559:            fmt_time(elapsed), eta_str);
                    560:        free(eta_str);
                    561: }
                    562:
1.1       djm       563: /*
                    564:  * perform a Miller-Rabin primality test
                    565:  * on the list of candidates
                    566:  * (checking both q and p)
                    567:  * The result is a list of so-call "safe" primes
                    568:  */
                    569: int
1.23      dtucker   570: prime_test(FILE *in, FILE *out, u_int32_t trials, u_int32_t generator_wanted,
1.26      dtucker   571:     char *checkpoint_file, unsigned long start_lineno, unsigned long num_lines)
1.1       djm       572: {
                    573:        BIGNUM *q, *p, *a;
                    574:        BN_CTX *ctx;
                    575:        char *cp, *lp;
                    576:        u_int32_t count_in = 0, count_out = 0, count_possible = 0;
                    577:        u_int32_t generator_known, in_tests, in_tries, in_type, in_size;
1.26      dtucker   578:        unsigned long last_processed = 0, end_lineno;
1.1       djm       579:        time_t time_start, time_stop;
                    580:        int res;
1.7       djm       581:
                    582:        if (trials < TRIAL_MINIMUM) {
                    583:                error("Minimum primality trials is %d", TRIAL_MINIMUM);
                    584:                return (-1);
                    585:        }
1.1       djm       586:
1.28      dtucker   587:        if (num_lines == 0)
                    588:                end_lineno = count_lines(in);
                    589:        else
                    590:                end_lineno = start_lineno + num_lines;
                    591:
1.1       djm       592:        time(&time_start);
                    593:
1.19      markus    594:        if ((p = BN_new()) == NULL)
                    595:                fatal("BN_new failed");
                    596:        if ((q = BN_new()) == NULL)
                    597:                fatal("BN_new failed");
                    598:        if ((ctx = BN_CTX_new()) == NULL)
                    599:                fatal("BN_CTX_new failed");
1.1       djm       600:
                    601:        debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
                    602:            ctime(&time_start), trials, generator_wanted);
                    603:
1.23      dtucker   604:        if (checkpoint_file != NULL)
                    605:                last_processed = read_checkpoint(checkpoint_file);
1.28      dtucker   606:        last_processed = start_lineno = MAX(last_processed, start_lineno);
                    607:        if (end_lineno == ULONG_MAX)
                    608:                debug("process from line %lu from pipe", last_processed);
1.26      dtucker   609:        else
1.28      dtucker   610:                debug("process from line %lu to line %lu", last_processed,
                    611:                    end_lineno);
1.23      dtucker   612:
1.1       djm       613:        res = 0;
                    614:        lp = xmalloc(QLINESIZE + 1);
1.26      dtucker   615:        while (fgets(lp, QLINESIZE + 1, in) != NULL && count_in < end_lineno) {
1.1       djm       616:                count_in++;
1.28      dtucker   617:                if (count_in <= last_processed) {
                    618:                        debug3("skipping line %u, before checkpoint or "
                    619:                            "specified start line", count_in);
                    620:                        continue;
                    621:                }
                    622:                if (checkpoint_file != NULL)
1.23      dtucker   623:                        write_checkpoint(checkpoint_file, count_in);
1.28      dtucker   624:                print_progress(start_lineno, count_in, end_lineno);
1.20      ray       625:                if (strlen(lp) < 14 || *lp == '!' || *lp == '#') {
1.1       djm       626:                        debug2("%10u: comment or short line", count_in);
                    627:                        continue;
                    628:                }
                    629:
                    630:                /* XXX - fragile parser */
                    631:                /* time */
                    632:                cp = &lp[14];   /* (skip) */
                    633:
                    634:                /* type */
                    635:                in_type = strtoul(cp, &cp, 10);
                    636:
                    637:                /* tests */
                    638:                in_tests = strtoul(cp, &cp, 10);
                    639:
1.21      djm       640:                if (in_tests & MODULI_TESTS_COMPOSITE) {
1.1       djm       641:                        debug2("%10u: known composite", count_in);
                    642:                        continue;
                    643:                }
1.5       djm       644:
1.1       djm       645:                /* tries */
                    646:                in_tries = strtoul(cp, &cp, 10);
                    647:
                    648:                /* size (most significant bit) */
                    649:                in_size = strtoul(cp, &cp, 10);
                    650:
                    651:                /* generator (hex) */
                    652:                generator_known = strtoul(cp, &cp, 16);
                    653:
                    654:                /* Skip white space */
                    655:                cp += strspn(cp, " ");
                    656:
                    657:                /* modulus (hex) */
                    658:                switch (in_type) {
1.21      djm       659:                case MODULI_TYPE_SOPHIE_GERMAIN:
1.6       djm       660:                        debug2("%10u: (%u) Sophie-Germain", count_in, in_type);
1.1       djm       661:                        a = q;
1.19      markus    662:                        if (BN_hex2bn(&a, cp) == 0)
                    663:                                fatal("BN_hex2bn failed");
1.1       djm       664:                        /* p = 2*q + 1 */
1.19      markus    665:                        if (BN_lshift(p, q, 1) == 0)
                    666:                                fatal("BN_lshift failed");
                    667:                        if (BN_add_word(p, 1) == 0)
                    668:                                fatal("BN_add_word failed");
1.1       djm       669:                        in_size += 1;
                    670:                        generator_known = 0;
                    671:                        break;
1.21      djm       672:                case MODULI_TYPE_UNSTRUCTURED:
                    673:                case MODULI_TYPE_SAFE:
                    674:                case MODULI_TYPE_SCHNORR:
                    675:                case MODULI_TYPE_STRONG:
                    676:                case MODULI_TYPE_UNKNOWN:
1.1       djm       677:                        debug2("%10u: (%u)", count_in, in_type);
                    678:                        a = p;
1.19      markus    679:                        if (BN_hex2bn(&a, cp) == 0)
                    680:                                fatal("BN_hex2bn failed");
1.1       djm       681:                        /* q = (p-1) / 2 */
1.19      markus    682:                        if (BN_rshift(q, p, 1) == 0)
                    683:                                fatal("BN_rshift failed");
1.1       djm       684:                        break;
1.5       djm       685:                default:
                    686:                        debug2("Unknown prime type");
                    687:                        break;
1.1       djm       688:                }
                    689:
                    690:                /*
                    691:                 * due to earlier inconsistencies in interpretation, check
                    692:                 * the proposed bit size.
                    693:                 */
1.11      avsm      694:                if ((u_int32_t)BN_num_bits(p) != (in_size + 1)) {
1.1       djm       695:                        debug2("%10u: bit size %u mismatch", count_in, in_size);
                    696:                        continue;
                    697:                }
                    698:                if (in_size < QSIZE_MINIMUM) {
                    699:                        debug2("%10u: bit size %u too short", count_in, in_size);
                    700:                        continue;
                    701:                }
                    702:
1.21      djm       703:                if (in_tests & MODULI_TESTS_MILLER_RABIN)
1.1       djm       704:                        in_tries += trials;
                    705:                else
                    706:                        in_tries = trials;
1.5       djm       707:
1.1       djm       708:                /*
                    709:                 * guess unknown generator
                    710:                 */
                    711:                if (generator_known == 0) {
                    712:                        if (BN_mod_word(p, 24) == 11)
                    713:                                generator_known = 2;
                    714:                        else if (BN_mod_word(p, 12) == 5)
                    715:                                generator_known = 3;
                    716:                        else {
                    717:                                u_int32_t r = BN_mod_word(p, 10);
                    718:
1.5       djm       719:                                if (r == 3 || r == 7)
1.1       djm       720:                                        generator_known = 5;
                    721:                        }
                    722:                }
                    723:                /*
                    724:                 * skip tests when desired generator doesn't match
                    725:                 */
                    726:                if (generator_wanted > 0 &&
                    727:                    generator_wanted != generator_known) {
                    728:                        debug2("%10u: generator %d != %d",
                    729:                            count_in, generator_known, generator_wanted);
1.4       dtucker   730:                        continue;
                    731:                }
                    732:
                    733:                /*
                    734:                 * Primes with no known generator are useless for DH, so
                    735:                 * skip those.
                    736:                 */
                    737:                if (generator_known == 0) {
                    738:                        debug2("%10u: no known generator", count_in);
1.1       djm       739:                        continue;
                    740:                }
                    741:
                    742:                count_possible++;
                    743:
                    744:                /*
1.2       djm       745:                 * The (1/4)^N performance bound on Miller-Rabin is
                    746:                 * extremely pessimistic, so don't spend a lot of time
                    747:                 * really verifying that q is prime until after we know
                    748:                 * that p is also prime. A single pass will weed out the
1.1       djm       749:                 * vast majority of composite q's.
                    750:                 */
1.22      djm       751:                if (BN_is_prime_ex(q, 1, ctx, NULL) <= 0) {
1.5       djm       752:                        debug("%10u: q failed first possible prime test",
1.1       djm       753:                            count_in);
                    754:                        continue;
                    755:                }
1.2       djm       756:
1.1       djm       757:                /*
1.2       djm       758:                 * q is possibly prime, so go ahead and really make sure
                    759:                 * that p is prime. If it is, then we can go back and do
                    760:                 * the same for q. If p is composite, chances are that
1.1       djm       761:                 * will show up on the first Rabin-Miller iteration so it
                    762:                 * doesn't hurt to specify a high iteration count.
                    763:                 */
1.22      djm       764:                if (!BN_is_prime_ex(p, trials, ctx, NULL)) {
1.5       djm       765:                        debug("%10u: p is not prime", count_in);
1.1       djm       766:                        continue;
                    767:                }
                    768:                debug("%10u: p is almost certainly prime", count_in);
                    769:
                    770:                /* recheck q more rigorously */
1.22      djm       771:                if (!BN_is_prime_ex(q, trials - 1, ctx, NULL)) {
1.1       djm       772:                        debug("%10u: q is not prime", count_in);
                    773:                        continue;
                    774:                }
                    775:                debug("%10u: q is almost certainly prime", count_in);
                    776:
1.21      djm       777:                if (qfileout(out, MODULI_TYPE_SAFE,
                    778:                    in_tests | MODULI_TESTS_MILLER_RABIN,
1.1       djm       779:                    in_tries, in_size, generator_known, p)) {
                    780:                        res = -1;
                    781:                        break;
                    782:                }
                    783:
                    784:                count_out++;
                    785:        }
                    786:
                    787:        time(&time_stop);
1.27      djm       788:        free(lp);
1.1       djm       789:        BN_free(p);
                    790:        BN_free(q);
                    791:        BN_CTX_free(ctx);
1.23      dtucker   792:
                    793:        if (checkpoint_file != NULL)
                    794:                unlink(checkpoint_file);
1.1       djm       795:
                    796:        logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
1.2       djm       797:            ctime(&time_stop), count_out, count_possible,
1.1       djm       798:            (long) (time_stop - time_start));
                    799:
                    800:        return (res);
                    801: }