[BACK]Return to moduli.c CVS log [TXT][DIR] Up to [local] / src / usr.bin / ssh

Annotation of src/usr.bin/ssh/moduli.c, Revision 1.39

1.39    ! dtucker     1: /* $OpenBSD: moduli.c,v 1.38 2022/05/01 23:20:30 djm Exp $ */
1.1       djm         2: /*
                      3:  * Copyright 1994 Phil Karn <karn@qualcomm.com>
                      4:  * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com>
                      5:  * Copyright 2000 Niels Provos <provos@citi.umich.edu>
                      6:  * All rights reserved.
                      7:  *
                      8:  * Redistribution and use in source and binary forms, with or without
                      9:  * modification, are permitted provided that the following conditions
                     10:  * are met:
                     11:  * 1. Redistributions of source code must retain the above copyright
                     12:  *    notice, this list of conditions and the following disclaimer.
                     13:  * 2. Redistributions in binary form must reproduce the above copyright
                     14:  *    notice, this list of conditions and the following disclaimer in the
                     15:  *    documentation and/or other materials provided with the distribution.
                     16:  *
                     17:  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
                     18:  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
                     19:  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
                     20:  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
                     21:  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
                     22:  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
                     23:  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
                     24:  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
                     25:  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
                     26:  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
                     27:  */
                     28:
                     29: /*
                     30:  * Two-step process to generate safe primes for DHGEX
                     31:  *
                     32:  *  Sieve candidates for "safe" primes,
                     33:  *  suitable for use as Diffie-Hellman moduli;
                     34:  *  that is, where q = (p-1)/2 is also prime.
                     35:  *
                     36:  * First step: generate candidate primes (memory intensive)
                     37:  * Second step: test primes' safety (processor intensive)
                     38:  */
                     39:
1.14      stevesk    40: #include <sys/types.h>
                     41:
                     42: #include <openssl/bn.h>
1.21      djm        43: #include <openssl/dh.h>
1.14      stevesk    44:
1.24      stsp       45: #include <errno.h>
1.17      stevesk    46: #include <stdio.h>
1.16      stevesk    47: #include <stdlib.h>
1.15      stevesk    48: #include <string.h>
1.18      deraadt    49: #include <stdarg.h>
1.14      stevesk    50: #include <time.h>
1.23      dtucker    51: #include <unistd.h>
1.30      deraadt    52: #include <limits.h>
1.14      stevesk    53:
1.1       djm        54: #include "xmalloc.h"
1.21      djm        55: #include "dh.h"
1.1       djm        56: #include "log.h"
1.28      dtucker    57: #include "misc.h"
1.1       djm        58:
                     59: /*
                     60:  * File output defines
                     61:  */
                     62:
                     63: /* need line long enough for largest moduli plus headers */
1.9       deraadt    64: #define QLINESIZE              (100+8192)
1.1       djm        65:
1.5       djm        66: /*
                     67:  * Size: decimal.
1.1       djm        68:  * Specifies the number of the most significant bit (0 to M).
1.5       djm        69:  * WARNING: internally, usually 1 to N.
1.1       djm        70:  */
1.9       deraadt    71: #define QSIZE_MINIMUM          (511)
1.1       djm        72:
                     73: /*
                     74:  * Prime sieving defines
                     75:  */
                     76:
                     77: /* Constant: assuming 8 bit bytes and 32 bit words */
1.9       deraadt    78: #define SHIFT_BIT      (3)
                     79: #define SHIFT_BYTE     (2)
                     80: #define SHIFT_WORD     (SHIFT_BIT+SHIFT_BYTE)
                     81: #define SHIFT_MEGABYTE (20)
                     82: #define SHIFT_MEGAWORD (SHIFT_MEGABYTE-SHIFT_BYTE)
1.1       djm        83:
                     84: /*
1.7       djm        85:  * Using virtual memory can cause thrashing.  This should be the largest
                     86:  * number that is supported without a large amount of disk activity --
                     87:  * that would increase the run time from hours to days or weeks!
                     88:  */
1.9       deraadt    89: #define LARGE_MINIMUM  (8UL)   /* megabytes */
1.7       djm        90:
                     91: /*
                     92:  * Do not increase this number beyond the unsigned integer bit size.
                     93:  * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits).
                     94:  */
1.9       deraadt    95: #define LARGE_MAXIMUM  (127UL) /* megabytes */
1.7       djm        96:
                     97: /*
1.1       djm        98:  * Constant: when used with 32-bit integers, the largest sieve prime
                     99:  * has to be less than 2**32.
                    100:  */
1.9       deraadt   101: #define SMALL_MAXIMUM  (0xffffffffUL)
1.1       djm       102:
                    103: /* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
1.9       deraadt   104: #define TINY_NUMBER    (1UL<<16)
1.1       djm       105:
                    106: /* Ensure enough bit space for testing 2*q. */
1.12      djm       107: #define TEST_MAXIMUM   (1UL<<16)
                    108: #define TEST_MINIMUM   (QSIZE_MINIMUM + 1)
                    109: /* real TEST_MINIMUM   (1UL << (SHIFT_WORD - TEST_POWER)) */
                    110: #define TEST_POWER     (3)     /* 2**n, n < SHIFT_WORD */
1.1       djm       111:
                    112: /* bit operations on 32-bit words */
1.12      djm       113: #define BIT_CLEAR(a,n) ((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
                    114: #define BIT_SET(a,n)   ((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
                    115: #define BIT_TEST(a,n)  ((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))
1.1       djm       116:
                    117: /*
                    118:  * Prime testing defines
                    119:  */
                    120:
1.7       djm       121: /* Minimum number of primality tests to perform */
1.12      djm       122: #define TRIAL_MINIMUM  (4)
1.7       djm       123:
1.1       djm       124: /*
                    125:  * Sieving data (XXX - move to struct)
                    126:  */
                    127:
                    128: /* sieve 2**16 */
                    129: static u_int32_t *TinySieve, tinybits;
                    130:
                    131: /* sieve 2**30 in 2**16 parts */
                    132: static u_int32_t *SmallSieve, smallbits, smallbase;
                    133:
                    134: /* sieve relative to the initial value */
                    135: static u_int32_t *LargeSieve, largewords, largetries, largenumbers;
                    136: static u_int32_t largebits, largememory;       /* megabytes */
                    137: static BIGNUM *largebase;
                    138:
1.11      avsm      139: int gen_candidates(FILE *, u_int32_t, u_int32_t, BIGNUM *);
1.26      dtucker   140: int prime_test(FILE *, FILE *, u_int32_t, u_int32_t, char *, unsigned long,
                    141:     unsigned long);
1.1       djm       142:
                    143: /*
                    144:  * print moduli out in consistent form,
                    145:  */
                    146: static int
                    147: qfileout(FILE * ofile, u_int32_t otype, u_int32_t otests, u_int32_t otries,
                    148:     u_int32_t osize, u_int32_t ogenerator, BIGNUM * omodulus)
                    149: {
                    150:        struct tm *gtm;
                    151:        time_t time_now;
                    152:        int res;
                    153:
                    154:        time(&time_now);
                    155:        gtm = gmtime(&time_now);
1.36      dtucker   156:        if (gtm == NULL)
                    157:                return -1;
1.2       djm       158:
1.1       djm       159:        res = fprintf(ofile, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
                    160:            gtm->tm_year + 1900, gtm->tm_mon + 1, gtm->tm_mday,
                    161:            gtm->tm_hour, gtm->tm_min, gtm->tm_sec,
                    162:            otype, otests, otries, osize, ogenerator);
                    163:
                    164:        if (res < 0)
                    165:                return (-1);
                    166:
                    167:        if (BN_print_fp(ofile, omodulus) < 1)
                    168:                return (-1);
                    169:
                    170:        res = fprintf(ofile, "\n");
                    171:        fflush(ofile);
                    172:
                    173:        return (res > 0 ? 0 : -1);
                    174: }
                    175:
                    176:
                    177: /*
                    178:  ** Sieve p's and q's with small factors
                    179:  */
                    180: static void
1.38      djm       181: sieve_large(u_int32_t s32)
1.1       djm       182: {
1.38      djm       183:        u_int64_t r, u, s = s32;
1.1       djm       184:
1.38      djm       185:        debug3("sieve_large %u", s32);
1.1       djm       186:        largetries++;
                    187:        /* r = largebase mod s */
1.38      djm       188:        r = BN_mod_word(largebase, s32);
1.1       djm       189:        if (r == 0)
                    190:                u = 0; /* s divides into largebase exactly */
                    191:        else
                    192:                u = s - r; /* largebase+u is first entry divisible by s */
                    193:
1.38      djm       194:        if (u < largebits * 2ULL) {
1.1       djm       195:                /*
                    196:                 * The sieve omits p's and q's divisible by 2, so ensure that
                    197:                 * largebase+u is odd. Then, step through the sieve in
                    198:                 * increments of 2*s
                    199:                 */
                    200:                if (u & 0x1)
                    201:                        u += s; /* Make largebase+u odd, and u even */
                    202:
                    203:                /* Mark all multiples of 2*s */
                    204:                for (u /= 2; u < largebits; u += s)
                    205:                        BIT_SET(LargeSieve, u);
                    206:        }
                    207:
                    208:        /* r = p mod s */
                    209:        r = (2 * r + 1) % s;
                    210:        if (r == 0)
                    211:                u = 0; /* s divides p exactly */
                    212:        else
                    213:                u = s - r; /* p+u is first entry divisible by s */
                    214:
1.38      djm       215:        if (u < largebits * 4ULL) {
1.1       djm       216:                /*
                    217:                 * The sieve omits p's divisible by 4, so ensure that
                    218:                 * largebase+u is not. Then, step through the sieve in
                    219:                 * increments of 4*s
                    220:                 */
                    221:                while (u & 0x3) {
                    222:                        if (SMALL_MAXIMUM - u < s)
                    223:                                return;
                    224:                        u += s;
                    225:                }
                    226:
                    227:                /* Mark all multiples of 4*s */
                    228:                for (u /= 4; u < largebits; u += s)
                    229:                        BIT_SET(LargeSieve, u);
                    230:        }
                    231: }
                    232:
                    233: /*
1.6       djm       234:  * list candidates for Sophie-Germain primes (where q = (p-1)/2)
1.1       djm       235:  * to standard output.
                    236:  * The list is checked against small known primes (less than 2**30).
                    237:  */
                    238: int
1.11      avsm      239: gen_candidates(FILE *out, u_int32_t memory, u_int32_t power, BIGNUM *start)
1.1       djm       240: {
                    241:        BIGNUM *q;
                    242:        u_int32_t j, r, s, t;
                    243:        u_int32_t smallwords = TINY_NUMBER >> 6;
                    244:        u_int32_t tinywords = TINY_NUMBER >> 6;
                    245:        time_t time_start, time_stop;
1.11      avsm      246:        u_int32_t i;
                    247:        int ret = 0;
1.1       djm       248:
                    249:        largememory = memory;
                    250:
1.7       djm       251:        if (memory != 0 &&
1.12      djm       252:            (memory < LARGE_MINIMUM || memory > LARGE_MAXIMUM)) {
1.7       djm       253:                error("Invalid memory amount (min %ld, max %ld)",
                    254:                    LARGE_MINIMUM, LARGE_MAXIMUM);
                    255:                return (-1);
                    256:        }
                    257:
1.1       djm       258:        /*
1.2       djm       259:         * Set power to the length in bits of the prime to be generated.
                    260:         * This is changed to 1 less than the desired safe prime moduli p.
                    261:         */
1.1       djm       262:        if (power > TEST_MAXIMUM) {
                    263:                error("Too many bits: %u > %lu", power, TEST_MAXIMUM);
                    264:                return (-1);
                    265:        } else if (power < TEST_MINIMUM) {
                    266:                error("Too few bits: %u < %u", power, TEST_MINIMUM);
                    267:                return (-1);
                    268:        }
                    269:        power--; /* decrement before squaring */
                    270:
                    271:        /*
1.2       djm       272:         * The density of ordinary primes is on the order of 1/bits, so the
                    273:         * density of safe primes should be about (1/bits)**2. Set test range
                    274:         * to something well above bits**2 to be reasonably sure (but not
                    275:         * guaranteed) of catching at least one safe prime.
1.1       djm       276:         */
                    277:        largewords = ((power * power) >> (SHIFT_WORD - TEST_POWER));
                    278:
                    279:        /*
1.2       djm       280:         * Need idea of how much memory is available. We don't have to use all
                    281:         * of it.
1.1       djm       282:         */
                    283:        if (largememory > LARGE_MAXIMUM) {
                    284:                logit("Limited memory: %u MB; limit %lu MB",
                    285:                    largememory, LARGE_MAXIMUM);
                    286:                largememory = LARGE_MAXIMUM;
                    287:        }
                    288:
                    289:        if (largewords <= (largememory << SHIFT_MEGAWORD)) {
                    290:                logit("Increased memory: %u MB; need %u bytes",
                    291:                    largememory, (largewords << SHIFT_BYTE));
                    292:                largewords = (largememory << SHIFT_MEGAWORD);
                    293:        } else if (largememory > 0) {
                    294:                logit("Decreased memory: %u MB; want %u bytes",
                    295:                    largememory, (largewords << SHIFT_BYTE));
                    296:                largewords = (largememory << SHIFT_MEGAWORD);
                    297:        }
                    298:
1.13      djm       299:        TinySieve = xcalloc(tinywords, sizeof(u_int32_t));
1.1       djm       300:        tinybits = tinywords << SHIFT_WORD;
                    301:
1.13      djm       302:        SmallSieve = xcalloc(smallwords, sizeof(u_int32_t));
1.1       djm       303:        smallbits = smallwords << SHIFT_WORD;
                    304:
                    305:        /*
                    306:         * dynamically determine available memory
                    307:         */
                    308:        while ((LargeSieve = calloc(largewords, sizeof(u_int32_t))) == NULL)
                    309:                largewords -= (1L << (SHIFT_MEGAWORD - 2)); /* 1/4 MB chunks */
                    310:
                    311:        largebits = largewords << SHIFT_WORD;
                    312:        largenumbers = largebits * 2;   /* even numbers excluded */
                    313:
                    314:        /* validation check: count the number of primes tried */
                    315:        largetries = 0;
1.19      markus    316:        if ((q = BN_new()) == NULL)
                    317:                fatal("BN_new failed");
1.1       djm       318:
                    319:        /*
1.2       djm       320:         * Generate random starting point for subprime search, or use
                    321:         * specified parameter.
1.1       djm       322:         */
1.19      markus    323:        if ((largebase = BN_new()) == NULL)
                    324:                fatal("BN_new failed");
                    325:        if (start == NULL) {
                    326:                if (BN_rand(largebase, power, 1, 1) == 0)
                    327:                        fatal("BN_rand failed");
                    328:        } else {
                    329:                if (BN_copy(largebase, start) == NULL)
                    330:                        fatal("BN_copy: failed");
                    331:        }
1.1       djm       332:
                    333:        /* ensure odd */
1.19      markus    334:        if (BN_set_bit(largebase, 0) == 0)
                    335:                fatal("BN_set_bit: failed");
1.1       djm       336:
                    337:        time(&time_start);
                    338:
1.2       djm       339:        logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start),
1.1       djm       340:            largenumbers, power);
                    341:        debug2("start point: 0x%s", BN_bn2hex(largebase));
                    342:
                    343:        /*
1.2       djm       344:         * TinySieve
                    345:         */
1.1       djm       346:        for (i = 0; i < tinybits; i++) {
                    347:                if (BIT_TEST(TinySieve, i))
                    348:                        continue; /* 2*i+3 is composite */
                    349:
                    350:                /* The next tiny prime */
                    351:                t = 2 * i + 3;
                    352:
                    353:                /* Mark all multiples of t */
                    354:                for (j = i + t; j < tinybits; j += t)
                    355:                        BIT_SET(TinySieve, j);
                    356:
                    357:                sieve_large(t);
                    358:        }
                    359:
                    360:        /*
1.2       djm       361:         * Start the small block search at the next possible prime. To avoid
                    362:         * fencepost errors, the last pass is skipped.
                    363:         */
1.1       djm       364:        for (smallbase = TINY_NUMBER + 3;
1.12      djm       365:            smallbase < (SMALL_MAXIMUM - TINY_NUMBER);
                    366:            smallbase += TINY_NUMBER) {
1.1       djm       367:                for (i = 0; i < tinybits; i++) {
                    368:                        if (BIT_TEST(TinySieve, i))
                    369:                                continue; /* 2*i+3 is composite */
                    370:
                    371:                        /* The next tiny prime */
                    372:                        t = 2 * i + 3;
                    373:                        r = smallbase % t;
                    374:
                    375:                        if (r == 0) {
                    376:                                s = 0; /* t divides into smallbase exactly */
                    377:                        } else {
                    378:                                /* smallbase+s is first entry divisible by t */
                    379:                                s = t - r;
                    380:                        }
                    381:
                    382:                        /*
                    383:                         * The sieve omits even numbers, so ensure that
                    384:                         * smallbase+s is odd. Then, step through the sieve
                    385:                         * in increments of 2*t
                    386:                         */
                    387:                        if (s & 1)
                    388:                                s += t; /* Make smallbase+s odd, and s even */
                    389:
                    390:                        /* Mark all multiples of 2*t */
                    391:                        for (s /= 2; s < smallbits; s += t)
                    392:                                BIT_SET(SmallSieve, s);
                    393:                }
                    394:
                    395:                /*
1.2       djm       396:                 * SmallSieve
                    397:                 */
1.1       djm       398:                for (i = 0; i < smallbits; i++) {
                    399:                        if (BIT_TEST(SmallSieve, i))
                    400:                                continue; /* 2*i+smallbase is composite */
                    401:
                    402:                        /* The next small prime */
                    403:                        sieve_large((2 * i) + smallbase);
                    404:                }
                    405:
                    406:                memset(SmallSieve, 0, smallwords << SHIFT_BYTE);
                    407:        }
                    408:
                    409:        time(&time_stop);
                    410:
1.32      deraadt   411:        logit("%.24s Sieved with %u small primes in %lld seconds",
                    412:            ctime(&time_stop), largetries, (long long)(time_stop - time_start));
1.1       djm       413:
                    414:        for (j = r = 0; j < largebits; j++) {
                    415:                if (BIT_TEST(LargeSieve, j))
                    416:                        continue; /* Definitely composite, skip */
                    417:
                    418:                debug2("test q = largebase+%u", 2 * j);
1.19      markus    419:                if (BN_set_word(q, 2 * j) == 0)
                    420:                        fatal("BN_set_word failed");
                    421:                if (BN_add(q, q, largebase) == 0)
                    422:                        fatal("BN_add failed");
1.21      djm       423:                if (qfileout(out, MODULI_TYPE_SOPHIE_GERMAIN,
                    424:                    MODULI_TESTS_SIEVE, largetries,
                    425:                    (power - 1) /* MSB */, (0), q) == -1) {
1.1       djm       426:                        ret = -1;
                    427:                        break;
                    428:                }
                    429:
                    430:                r++; /* count q */
                    431:        }
                    432:
                    433:        time(&time_stop);
                    434:
1.27      djm       435:        free(LargeSieve);
                    436:        free(SmallSieve);
                    437:        free(TinySieve);
1.1       djm       438:
                    439:        logit("%.24s Found %u candidates", ctime(&time_stop), r);
                    440:
                    441:        return (ret);
                    442: }
                    443:
1.23      dtucker   444: static void
                    445: write_checkpoint(char *cpfile, u_int32_t lineno)
                    446: {
                    447:        FILE *fp;
1.30      deraadt   448:        char tmp[PATH_MAX];
1.39    ! dtucker   449:        int r, writeok, closeok;
1.23      dtucker   450:
1.25      djm       451:        r = snprintf(tmp, sizeof(tmp), "%s.XXXXXXXXXX", cpfile);
1.35      deraadt   452:        if (r < 0 || r >= PATH_MAX) {
1.23      dtucker   453:                logit("write_checkpoint: temp pathname too long");
                    454:                return;
                    455:        }
1.25      djm       456:        if ((r = mkstemp(tmp)) == -1) {
                    457:                logit("mkstemp(%s): %s", tmp, strerror(errno));
1.23      dtucker   458:                return;
                    459:        }
                    460:        if ((fp = fdopen(r, "w")) == NULL) {
                    461:                logit("write_checkpoint: fdopen: %s", strerror(errno));
1.29      doug      462:                unlink(tmp);
1.23      dtucker   463:                close(r);
                    464:                return;
                    465:        }
1.39    ! dtucker   466:        writeok = (fprintf(fp, "%lu\n", (unsigned long)lineno) > 0);
        !           467:        closeok = (fclose(fp) == 0);
        !           468:        if (writeok && closeok && rename(tmp, cpfile) == 0) {
1.23      dtucker   469:                debug3("wrote checkpoint line %lu to '%s'",
                    470:                    (unsigned long)lineno, cpfile);
1.39    ! dtucker   471:        } else {
1.23      dtucker   472:                logit("failed to write to checkpoint file '%s': %s", cpfile,
                    473:                    strerror(errno));
1.39    ! dtucker   474:                (void)unlink(tmp);
        !           475:        }
1.23      dtucker   476: }
                    477:
                    478: static unsigned long
                    479: read_checkpoint(char *cpfile)
                    480: {
                    481:        FILE *fp;
                    482:        unsigned long lineno = 0;
                    483:
                    484:        if ((fp = fopen(cpfile, "r")) == NULL)
                    485:                return 0;
                    486:        if (fscanf(fp, "%lu\n", &lineno) < 1)
                    487:                logit("Failed to load checkpoint from '%s'", cpfile);
                    488:        else
                    489:                logit("Loaded checkpoint from '%s' line %lu", cpfile, lineno);
                    490:        fclose(fp);
                    491:        return lineno;
                    492: }
                    493:
1.28      dtucker   494: static unsigned long
                    495: count_lines(FILE *f)
                    496: {
                    497:        unsigned long count = 0;
                    498:        char lp[QLINESIZE + 1];
                    499:
                    500:        if (fseek(f, 0, SEEK_SET) != 0) {
                    501:                debug("input file is not seekable");
                    502:                return ULONG_MAX;
                    503:        }
                    504:        while (fgets(lp, QLINESIZE + 1, f) != NULL)
                    505:                count++;
                    506:        rewind(f);
                    507:        debug("input file has %lu lines", count);
                    508:        return count;
                    509: }
                    510:
                    511: static char *
                    512: fmt_time(time_t seconds)
                    513: {
                    514:        int day, hr, min;
                    515:        static char buf[128];
                    516:
                    517:        min = (seconds / 60) % 60;
                    518:        hr = (seconds / 60 / 60) % 24;
                    519:        day = seconds / 60 / 60 / 24;
                    520:        if (day > 0)
                    521:                snprintf(buf, sizeof buf, "%dd %d:%02d", day, hr, min);
                    522:        else
                    523:                snprintf(buf, sizeof buf, "%d:%02d", hr, min);
                    524:        return buf;
                    525: }
                    526:
                    527: static void
                    528: print_progress(unsigned long start_lineno, unsigned long current_lineno,
                    529:     unsigned long end_lineno)
                    530: {
                    531:        static time_t time_start, time_prev;
                    532:        time_t time_now, elapsed;
                    533:        unsigned long num_to_process, processed, remaining, percent, eta;
                    534:        double time_per_line;
                    535:        char *eta_str;
                    536:
                    537:        time_now = monotime();
                    538:        if (time_start == 0) {
                    539:                time_start = time_prev = time_now;
                    540:                return;
                    541:        }
                    542:        /* print progress after 1m then once per 5m */
                    543:        if (time_now - time_prev < 5 * 60)
                    544:                return;
                    545:        time_prev = time_now;
                    546:        elapsed = time_now - time_start;
                    547:        processed = current_lineno - start_lineno;
                    548:        remaining = end_lineno - current_lineno;
                    549:        num_to_process = end_lineno - start_lineno;
                    550:        time_per_line = (double)elapsed / processed;
                    551:        /* if we don't know how many we're processing just report count+time */
                    552:        time(&time_now);
                    553:        if (end_lineno == ULONG_MAX) {
                    554:                logit("%.24s processed %lu in %s", ctime(&time_now),
                    555:                    processed, fmt_time(elapsed));
                    556:                return;
                    557:        }
                    558:        percent = 100 * processed / num_to_process;
                    559:        eta = time_per_line * remaining;
                    560:        eta_str = xstrdup(fmt_time(eta));
                    561:        logit("%.24s processed %lu of %lu (%lu%%) in %s, ETA %s",
                    562:            ctime(&time_now), processed, num_to_process, percent,
                    563:            fmt_time(elapsed), eta_str);
                    564:        free(eta_str);
                    565: }
                    566:
1.1       djm       567: /*
                    568:  * perform a Miller-Rabin primality test
                    569:  * on the list of candidates
                    570:  * (checking both q and p)
                    571:  * The result is a list of so-call "safe" primes
                    572:  */
                    573: int
1.23      dtucker   574: prime_test(FILE *in, FILE *out, u_int32_t trials, u_int32_t generator_wanted,
1.26      dtucker   575:     char *checkpoint_file, unsigned long start_lineno, unsigned long num_lines)
1.1       djm       576: {
                    577:        BIGNUM *q, *p, *a;
                    578:        char *cp, *lp;
                    579:        u_int32_t count_in = 0, count_out = 0, count_possible = 0;
                    580:        u_int32_t generator_known, in_tests, in_tries, in_type, in_size;
1.26      dtucker   581:        unsigned long last_processed = 0, end_lineno;
1.1       djm       582:        time_t time_start, time_stop;
1.33      tb        583:        int res, is_prime;
1.7       djm       584:
                    585:        if (trials < TRIAL_MINIMUM) {
                    586:                error("Minimum primality trials is %d", TRIAL_MINIMUM);
                    587:                return (-1);
                    588:        }
1.1       djm       589:
1.28      dtucker   590:        if (num_lines == 0)
                    591:                end_lineno = count_lines(in);
                    592:        else
                    593:                end_lineno = start_lineno + num_lines;
                    594:
1.1       djm       595:        time(&time_start);
                    596:
1.19      markus    597:        if ((p = BN_new()) == NULL)
                    598:                fatal("BN_new failed");
                    599:        if ((q = BN_new()) == NULL)
                    600:                fatal("BN_new failed");
1.1       djm       601:
                    602:        debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
                    603:            ctime(&time_start), trials, generator_wanted);
                    604:
1.23      dtucker   605:        if (checkpoint_file != NULL)
                    606:                last_processed = read_checkpoint(checkpoint_file);
1.31      deraadt   607:        last_processed = start_lineno = MAXIMUM(last_processed, start_lineno);
1.28      dtucker   608:        if (end_lineno == ULONG_MAX)
                    609:                debug("process from line %lu from pipe", last_processed);
1.26      dtucker   610:        else
1.28      dtucker   611:                debug("process from line %lu to line %lu", last_processed,
                    612:                    end_lineno);
1.23      dtucker   613:
1.1       djm       614:        res = 0;
                    615:        lp = xmalloc(QLINESIZE + 1);
1.26      dtucker   616:        while (fgets(lp, QLINESIZE + 1, in) != NULL && count_in < end_lineno) {
1.1       djm       617:                count_in++;
1.28      dtucker   618:                if (count_in <= last_processed) {
                    619:                        debug3("skipping line %u, before checkpoint or "
                    620:                            "specified start line", count_in);
                    621:                        continue;
                    622:                }
                    623:                if (checkpoint_file != NULL)
1.23      dtucker   624:                        write_checkpoint(checkpoint_file, count_in);
1.28      dtucker   625:                print_progress(start_lineno, count_in, end_lineno);
1.20      ray       626:                if (strlen(lp) < 14 || *lp == '!' || *lp == '#') {
1.1       djm       627:                        debug2("%10u: comment or short line", count_in);
                    628:                        continue;
                    629:                }
                    630:
                    631:                /* XXX - fragile parser */
                    632:                /* time */
                    633:                cp = &lp[14];   /* (skip) */
                    634:
                    635:                /* type */
                    636:                in_type = strtoul(cp, &cp, 10);
                    637:
                    638:                /* tests */
                    639:                in_tests = strtoul(cp, &cp, 10);
                    640:
1.21      djm       641:                if (in_tests & MODULI_TESTS_COMPOSITE) {
1.1       djm       642:                        debug2("%10u: known composite", count_in);
                    643:                        continue;
                    644:                }
1.5       djm       645:
1.1       djm       646:                /* tries */
                    647:                in_tries = strtoul(cp, &cp, 10);
                    648:
                    649:                /* size (most significant bit) */
                    650:                in_size = strtoul(cp, &cp, 10);
                    651:
                    652:                /* generator (hex) */
                    653:                generator_known = strtoul(cp, &cp, 16);
                    654:
                    655:                /* Skip white space */
                    656:                cp += strspn(cp, " ");
                    657:
                    658:                /* modulus (hex) */
                    659:                switch (in_type) {
1.21      djm       660:                case MODULI_TYPE_SOPHIE_GERMAIN:
1.6       djm       661:                        debug2("%10u: (%u) Sophie-Germain", count_in, in_type);
1.1       djm       662:                        a = q;
1.19      markus    663:                        if (BN_hex2bn(&a, cp) == 0)
                    664:                                fatal("BN_hex2bn failed");
1.1       djm       665:                        /* p = 2*q + 1 */
1.19      markus    666:                        if (BN_lshift(p, q, 1) == 0)
                    667:                                fatal("BN_lshift failed");
                    668:                        if (BN_add_word(p, 1) == 0)
                    669:                                fatal("BN_add_word failed");
1.1       djm       670:                        in_size += 1;
                    671:                        generator_known = 0;
                    672:                        break;
1.21      djm       673:                case MODULI_TYPE_UNSTRUCTURED:
                    674:                case MODULI_TYPE_SAFE:
                    675:                case MODULI_TYPE_SCHNORR:
                    676:                case MODULI_TYPE_STRONG:
                    677:                case MODULI_TYPE_UNKNOWN:
1.1       djm       678:                        debug2("%10u: (%u)", count_in, in_type);
                    679:                        a = p;
1.19      markus    680:                        if (BN_hex2bn(&a, cp) == 0)
                    681:                                fatal("BN_hex2bn failed");
1.1       djm       682:                        /* q = (p-1) / 2 */
1.19      markus    683:                        if (BN_rshift(q, p, 1) == 0)
                    684:                                fatal("BN_rshift failed");
1.1       djm       685:                        break;
1.5       djm       686:                default:
                    687:                        debug2("Unknown prime type");
                    688:                        break;
1.1       djm       689:                }
                    690:
                    691:                /*
                    692:                 * due to earlier inconsistencies in interpretation, check
                    693:                 * the proposed bit size.
                    694:                 */
1.11      avsm      695:                if ((u_int32_t)BN_num_bits(p) != (in_size + 1)) {
1.1       djm       696:                        debug2("%10u: bit size %u mismatch", count_in, in_size);
                    697:                        continue;
                    698:                }
                    699:                if (in_size < QSIZE_MINIMUM) {
                    700:                        debug2("%10u: bit size %u too short", count_in, in_size);
                    701:                        continue;
                    702:                }
                    703:
1.21      djm       704:                if (in_tests & MODULI_TESTS_MILLER_RABIN)
1.1       djm       705:                        in_tries += trials;
                    706:                else
                    707:                        in_tries = trials;
1.5       djm       708:
1.1       djm       709:                /*
                    710:                 * guess unknown generator
                    711:                 */
                    712:                if (generator_known == 0) {
                    713:                        if (BN_mod_word(p, 24) == 11)
                    714:                                generator_known = 2;
                    715:                        else {
                    716:                                u_int32_t r = BN_mod_word(p, 10);
                    717:
1.5       djm       718:                                if (r == 3 || r == 7)
1.1       djm       719:                                        generator_known = 5;
                    720:                        }
                    721:                }
                    722:                /*
                    723:                 * skip tests when desired generator doesn't match
                    724:                 */
                    725:                if (generator_wanted > 0 &&
                    726:                    generator_wanted != generator_known) {
                    727:                        debug2("%10u: generator %d != %d",
                    728:                            count_in, generator_known, generator_wanted);
1.4       dtucker   729:                        continue;
                    730:                }
                    731:
                    732:                /*
                    733:                 * Primes with no known generator are useless for DH, so
                    734:                 * skip those.
                    735:                 */
                    736:                if (generator_known == 0) {
                    737:                        debug2("%10u: no known generator", count_in);
1.1       djm       738:                        continue;
                    739:                }
                    740:
                    741:                count_possible++;
                    742:
                    743:                /*
1.2       djm       744:                 * The (1/4)^N performance bound on Miller-Rabin is
                    745:                 * extremely pessimistic, so don't spend a lot of time
                    746:                 * really verifying that q is prime until after we know
                    747:                 * that p is also prime. A single pass will weed out the
1.1       djm       748:                 * vast majority of composite q's.
                    749:                 */
1.37      djm       750:                is_prime = BN_is_prime_ex(q, 1, NULL, NULL);
1.33      tb        751:                if (is_prime < 0)
                    752:                        fatal("BN_is_prime_ex failed");
                    753:                if (is_prime == 0) {
1.5       djm       754:                        debug("%10u: q failed first possible prime test",
1.1       djm       755:                            count_in);
                    756:                        continue;
                    757:                }
1.2       djm       758:
1.1       djm       759:                /*
1.2       djm       760:                 * q is possibly prime, so go ahead and really make sure
                    761:                 * that p is prime. If it is, then we can go back and do
                    762:                 * the same for q. If p is composite, chances are that
1.1       djm       763:                 * will show up on the first Rabin-Miller iteration so it
                    764:                 * doesn't hurt to specify a high iteration count.
                    765:                 */
1.37      djm       766:                is_prime = BN_is_prime_ex(p, trials, NULL, NULL);
1.33      tb        767:                if (is_prime < 0)
                    768:                        fatal("BN_is_prime_ex failed");
                    769:                if (is_prime == 0) {
1.5       djm       770:                        debug("%10u: p is not prime", count_in);
1.1       djm       771:                        continue;
                    772:                }
                    773:                debug("%10u: p is almost certainly prime", count_in);
                    774:
                    775:                /* recheck q more rigorously */
1.37      djm       776:                is_prime = BN_is_prime_ex(q, trials - 1, NULL, NULL);
1.33      tb        777:                if (is_prime < 0)
                    778:                        fatal("BN_is_prime_ex failed");
                    779:                if (is_prime == 0) {
1.1       djm       780:                        debug("%10u: q is not prime", count_in);
                    781:                        continue;
                    782:                }
                    783:                debug("%10u: q is almost certainly prime", count_in);
                    784:
1.21      djm       785:                if (qfileout(out, MODULI_TYPE_SAFE,
                    786:                    in_tests | MODULI_TESTS_MILLER_RABIN,
1.1       djm       787:                    in_tries, in_size, generator_known, p)) {
                    788:                        res = -1;
                    789:                        break;
                    790:                }
                    791:
                    792:                count_out++;
                    793:        }
                    794:
                    795:        time(&time_stop);
1.27      djm       796:        free(lp);
1.1       djm       797:        BN_free(p);
                    798:        BN_free(q);
1.23      dtucker   799:
                    800:        if (checkpoint_file != NULL)
                    801:                unlink(checkpoint_file);
1.1       djm       802:
                    803:        logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
1.2       djm       804:            ctime(&time_stop), count_out, count_possible,
1.1       djm       805:            (long) (time_stop - time_start));
                    806:
                    807:        return (res);
                    808: }