[BACK]Return to moduli.c CVS log [TXT][DIR] Up to [local] / src / usr.bin / ssh

Annotation of src/usr.bin/ssh/moduli.c, Revision 1.4

1.4     ! dtucker     1: /* $OpenBSD: moduli.c,v 1.3 2003/12/07 06:34:18 djm Exp $ */
1.1       djm         2: /*
                      3:  * Copyright 1994 Phil Karn <karn@qualcomm.com>
                      4:  * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com>
                      5:  * Copyright 2000 Niels Provos <provos@citi.umich.edu>
                      6:  * All rights reserved.
                      7:  *
                      8:  * Redistribution and use in source and binary forms, with or without
                      9:  * modification, are permitted provided that the following conditions
                     10:  * are met:
                     11:  * 1. Redistributions of source code must retain the above copyright
                     12:  *    notice, this list of conditions and the following disclaimer.
                     13:  * 2. Redistributions in binary form must reproduce the above copyright
                     14:  *    notice, this list of conditions and the following disclaimer in the
                     15:  *    documentation and/or other materials provided with the distribution.
                     16:  *
                     17:  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
                     18:  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
                     19:  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
                     20:  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
                     21:  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
                     22:  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
                     23:  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
                     24:  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
                     25:  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
                     26:  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
                     27:  */
                     28:
                     29: /*
                     30:  * Two-step process to generate safe primes for DHGEX
                     31:  *
                     32:  *  Sieve candidates for "safe" primes,
                     33:  *  suitable for use as Diffie-Hellman moduli;
                     34:  *  that is, where q = (p-1)/2 is also prime.
                     35:  *
                     36:  * First step: generate candidate primes (memory intensive)
                     37:  * Second step: test primes' safety (processor intensive)
                     38:  */
                     39:
                     40: #include "includes.h"
                     41: #include "moduli.h"
                     42: #include "xmalloc.h"
                     43: #include "log.h"
                     44:
                     45: #include <openssl/bn.h>
                     46:
                     47: /*
                     48:  * File output defines
                     49:  */
                     50:
                     51: /* need line long enough for largest moduli plus headers */
                     52: #define QLINESIZE               (100+8192)
                     53:
                     54: /* Type: decimal.
                     55:  * Specifies the internal structure of the prime modulus.
                     56:  */
                     57: #define QTYPE_UNKNOWN           (0)
                     58: #define QTYPE_UNSTRUCTURED      (1)
                     59: #define QTYPE_SAFE              (2)
                     60: #define QTYPE_SCHNOOR           (3)
                     61: #define QTYPE_SOPHIE_GERMAINE   (4)
                     62: #define QTYPE_STRONG            (5)
                     63:
                     64: /* Tests: decimal (bit field).
                     65:  * Specifies the methods used in checking for primality.
                     66:  * Usually, more than one test is used.
                     67:  */
                     68: #define QTEST_UNTESTED          (0x00)
                     69: #define QTEST_COMPOSITE         (0x01)
                     70: #define QTEST_SIEVE             (0x02)
                     71: #define QTEST_MILLER_RABIN      (0x04)
                     72: #define QTEST_JACOBI            (0x08)
                     73: #define QTEST_ELLIPTIC          (0x10)
                     74:
                     75: /* Size: decimal.
                     76:  * Specifies the number of the most significant bit (0 to M).
                     77:  ** WARNING: internally, usually 1 to N.
                     78:  */
                     79: #define QSIZE_MINIMUM           (511)
                     80:
                     81: /*
                     82:  * Prime sieving defines
                     83:  */
                     84:
                     85: /* Constant: assuming 8 bit bytes and 32 bit words */
                     86: #define SHIFT_BIT       (3)
                     87: #define SHIFT_BYTE      (2)
                     88: #define SHIFT_WORD      (SHIFT_BIT+SHIFT_BYTE)
                     89: #define SHIFT_MEGABYTE  (20)
                     90: #define SHIFT_MEGAWORD  (SHIFT_MEGABYTE-SHIFT_BYTE)
                     91:
                     92: /*
                     93:  * Constant: when used with 32-bit integers, the largest sieve prime
                     94:  * has to be less than 2**32.
                     95:  */
                     96: #define SMALL_MAXIMUM   (0xffffffffUL)
                     97:
                     98: /* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
                     99: #define TINY_NUMBER     (1UL<<16)
                    100:
                    101: /* Ensure enough bit space for testing 2*q. */
                    102: #define TEST_MAXIMUM    (1UL<<16)
                    103: #define TEST_MINIMUM    (QSIZE_MINIMUM + 1)
                    104: /* real TEST_MINIMUM    (1UL << (SHIFT_WORD - TEST_POWER)) */
                    105: #define TEST_POWER      (3)    /* 2**n, n < SHIFT_WORD */
                    106:
                    107: /* bit operations on 32-bit words */
                    108: #define BIT_CLEAR(a,n)  ((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
                    109: #define BIT_SET(a,n)    ((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
                    110: #define BIT_TEST(a,n)   ((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))
                    111:
                    112: /*
                    113:  * Prime testing defines
                    114:  */
                    115:
                    116: /*
                    117:  * Sieving data (XXX - move to struct)
                    118:  */
                    119:
                    120: /* sieve 2**16 */
                    121: static u_int32_t *TinySieve, tinybits;
                    122:
                    123: /* sieve 2**30 in 2**16 parts */
                    124: static u_int32_t *SmallSieve, smallbits, smallbase;
                    125:
                    126: /* sieve relative to the initial value */
                    127: static u_int32_t *LargeSieve, largewords, largetries, largenumbers;
                    128: static u_int32_t largebits, largememory;       /* megabytes */
                    129: static BIGNUM *largebase;
                    130:
                    131:
                    132: /*
                    133:  * print moduli out in consistent form,
                    134:  */
                    135: static int
                    136: qfileout(FILE * ofile, u_int32_t otype, u_int32_t otests, u_int32_t otries,
                    137:     u_int32_t osize, u_int32_t ogenerator, BIGNUM * omodulus)
                    138: {
                    139:        struct tm *gtm;
                    140:        time_t time_now;
                    141:        int res;
                    142:
                    143:        time(&time_now);
                    144:        gtm = gmtime(&time_now);
1.2       djm       145:
1.1       djm       146:        res = fprintf(ofile, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
                    147:            gtm->tm_year + 1900, gtm->tm_mon + 1, gtm->tm_mday,
                    148:            gtm->tm_hour, gtm->tm_min, gtm->tm_sec,
                    149:            otype, otests, otries, osize, ogenerator);
                    150:
                    151:        if (res < 0)
                    152:                return (-1);
                    153:
                    154:        if (BN_print_fp(ofile, omodulus) < 1)
                    155:                return (-1);
                    156:
                    157:        res = fprintf(ofile, "\n");
                    158:        fflush(ofile);
                    159:
                    160:        return (res > 0 ? 0 : -1);
                    161: }
                    162:
                    163:
                    164: /*
                    165:  ** Sieve p's and q's with small factors
                    166:  */
                    167: static void
                    168: sieve_large(u_int32_t s)
                    169: {
                    170:        u_int32_t r, u;
                    171:
                    172:        debug2("sieve_large %u", s);
                    173:        largetries++;
                    174:        /* r = largebase mod s */
                    175:        r = BN_mod_word(largebase, s);
                    176:        if (r == 0)
                    177:                u = 0; /* s divides into largebase exactly */
                    178:        else
                    179:                u = s - r; /* largebase+u is first entry divisible by s */
                    180:
                    181:        if (u < largebits * 2) {
                    182:                /*
                    183:                 * The sieve omits p's and q's divisible by 2, so ensure that
                    184:                 * largebase+u is odd. Then, step through the sieve in
                    185:                 * increments of 2*s
                    186:                 */
                    187:                if (u & 0x1)
                    188:                        u += s; /* Make largebase+u odd, and u even */
                    189:
                    190:                /* Mark all multiples of 2*s */
                    191:                for (u /= 2; u < largebits; u += s)
                    192:                        BIT_SET(LargeSieve, u);
                    193:        }
                    194:
                    195:        /* r = p mod s */
                    196:        r = (2 * r + 1) % s;
                    197:        if (r == 0)
                    198:                u = 0; /* s divides p exactly */
                    199:        else
                    200:                u = s - r; /* p+u is first entry divisible by s */
                    201:
                    202:        if (u < largebits * 4) {
                    203:                /*
                    204:                 * The sieve omits p's divisible by 4, so ensure that
                    205:                 * largebase+u is not. Then, step through the sieve in
                    206:                 * increments of 4*s
                    207:                 */
                    208:                while (u & 0x3) {
                    209:                        if (SMALL_MAXIMUM - u < s)
                    210:                                return;
                    211:                        u += s;
                    212:                }
                    213:
                    214:                /* Mark all multiples of 4*s */
                    215:                for (u /= 4; u < largebits; u += s)
                    216:                        BIT_SET(LargeSieve, u);
                    217:        }
                    218: }
                    219:
                    220: /*
                    221:  * list candidates for Sophie-Germaine primes (where q = (p-1)/2)
                    222:  * to standard output.
                    223:  * The list is checked against small known primes (less than 2**30).
                    224:  */
                    225: int
                    226: gen_candidates(FILE *out, int memory, int power, BIGNUM *start)
                    227: {
                    228:        BIGNUM *q;
                    229:        u_int32_t j, r, s, t;
                    230:        u_int32_t smallwords = TINY_NUMBER >> 6;
                    231:        u_int32_t tinywords = TINY_NUMBER >> 6;
                    232:        time_t time_start, time_stop;
                    233:        int i, ret = 0;
                    234:
                    235:        largememory = memory;
                    236:
                    237:        /*
1.2       djm       238:         * Set power to the length in bits of the prime to be generated.
                    239:         * This is changed to 1 less than the desired safe prime moduli p.
                    240:         */
1.1       djm       241:        if (power > TEST_MAXIMUM) {
                    242:                error("Too many bits: %u > %lu", power, TEST_MAXIMUM);
                    243:                return (-1);
                    244:        } else if (power < TEST_MINIMUM) {
                    245:                error("Too few bits: %u < %u", power, TEST_MINIMUM);
                    246:                return (-1);
                    247:        }
                    248:        power--; /* decrement before squaring */
                    249:
                    250:        /*
1.2       djm       251:         * The density of ordinary primes is on the order of 1/bits, so the
                    252:         * density of safe primes should be about (1/bits)**2. Set test range
                    253:         * to something well above bits**2 to be reasonably sure (but not
                    254:         * guaranteed) of catching at least one safe prime.
1.1       djm       255:         */
                    256:        largewords = ((power * power) >> (SHIFT_WORD - TEST_POWER));
                    257:
                    258:        /*
1.2       djm       259:         * Need idea of how much memory is available. We don't have to use all
                    260:         * of it.
1.1       djm       261:         */
                    262:        if (largememory > LARGE_MAXIMUM) {
                    263:                logit("Limited memory: %u MB; limit %lu MB",
                    264:                    largememory, LARGE_MAXIMUM);
                    265:                largememory = LARGE_MAXIMUM;
                    266:        }
                    267:
                    268:        if (largewords <= (largememory << SHIFT_MEGAWORD)) {
                    269:                logit("Increased memory: %u MB; need %u bytes",
                    270:                    largememory, (largewords << SHIFT_BYTE));
                    271:                largewords = (largememory << SHIFT_MEGAWORD);
                    272:        } else if (largememory > 0) {
                    273:                logit("Decreased memory: %u MB; want %u bytes",
                    274:                    largememory, (largewords << SHIFT_BYTE));
                    275:                largewords = (largememory << SHIFT_MEGAWORD);
                    276:        }
                    277:
                    278:        TinySieve = calloc(tinywords, sizeof(u_int32_t));
                    279:        if (TinySieve == NULL) {
                    280:                error("Insufficient memory for tiny sieve: need %u bytes",
                    281:                    tinywords << SHIFT_BYTE);
                    282:                exit(1);
                    283:        }
                    284:        tinybits = tinywords << SHIFT_WORD;
                    285:
                    286:        SmallSieve = calloc(smallwords, sizeof(u_int32_t));
                    287:        if (SmallSieve == NULL) {
                    288:                error("Insufficient memory for small sieve: need %u bytes",
                    289:                    smallwords << SHIFT_BYTE);
                    290:                xfree(TinySieve);
                    291:                exit(1);
                    292:        }
                    293:        smallbits = smallwords << SHIFT_WORD;
                    294:
                    295:        /*
                    296:         * dynamically determine available memory
                    297:         */
                    298:        while ((LargeSieve = calloc(largewords, sizeof(u_int32_t))) == NULL)
                    299:                largewords -= (1L << (SHIFT_MEGAWORD - 2)); /* 1/4 MB chunks */
                    300:
                    301:        largebits = largewords << SHIFT_WORD;
                    302:        largenumbers = largebits * 2;   /* even numbers excluded */
                    303:
                    304:        /* validation check: count the number of primes tried */
                    305:        largetries = 0;
                    306:        q = BN_new();
                    307:
                    308:        /*
1.2       djm       309:         * Generate random starting point for subprime search, or use
                    310:         * specified parameter.
1.1       djm       311:         */
                    312:        largebase = BN_new();
                    313:        if (start == NULL)
                    314:                BN_rand(largebase, power, 1, 1);
                    315:        else
                    316:                BN_copy(largebase, start);
                    317:
                    318:        /* ensure odd */
                    319:        BN_set_bit(largebase, 0);
                    320:
                    321:        time(&time_start);
                    322:
1.2       djm       323:        logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start),
1.1       djm       324:            largenumbers, power);
                    325:        debug2("start point: 0x%s", BN_bn2hex(largebase));
                    326:
                    327:        /*
1.2       djm       328:         * TinySieve
                    329:         */
1.1       djm       330:        for (i = 0; i < tinybits; i++) {
                    331:                if (BIT_TEST(TinySieve, i))
                    332:                        continue; /* 2*i+3 is composite */
                    333:
                    334:                /* The next tiny prime */
                    335:                t = 2 * i + 3;
                    336:
                    337:                /* Mark all multiples of t */
                    338:                for (j = i + t; j < tinybits; j += t)
                    339:                        BIT_SET(TinySieve, j);
                    340:
                    341:                sieve_large(t);
                    342:        }
                    343:
                    344:        /*
1.2       djm       345:         * Start the small block search at the next possible prime. To avoid
                    346:         * fencepost errors, the last pass is skipped.
                    347:         */
1.1       djm       348:        for (smallbase = TINY_NUMBER + 3;
                    349:             smallbase < (SMALL_MAXIMUM - TINY_NUMBER);
                    350:             smallbase += TINY_NUMBER) {
                    351:                for (i = 0; i < tinybits; i++) {
                    352:                        if (BIT_TEST(TinySieve, i))
                    353:                                continue; /* 2*i+3 is composite */
                    354:
                    355:                        /* The next tiny prime */
                    356:                        t = 2 * i + 3;
                    357:                        r = smallbase % t;
                    358:
                    359:                        if (r == 0) {
                    360:                                s = 0; /* t divides into smallbase exactly */
                    361:                        } else {
                    362:                                /* smallbase+s is first entry divisible by t */
                    363:                                s = t - r;
                    364:                        }
                    365:
                    366:                        /*
                    367:                         * The sieve omits even numbers, so ensure that
                    368:                         * smallbase+s is odd. Then, step through the sieve
                    369:                         * in increments of 2*t
                    370:                         */
                    371:                        if (s & 1)
                    372:                                s += t; /* Make smallbase+s odd, and s even */
                    373:
                    374:                        /* Mark all multiples of 2*t */
                    375:                        for (s /= 2; s < smallbits; s += t)
                    376:                                BIT_SET(SmallSieve, s);
                    377:                }
                    378:
                    379:                /*
1.2       djm       380:                 * SmallSieve
                    381:                 */
1.1       djm       382:                for (i = 0; i < smallbits; i++) {
                    383:                        if (BIT_TEST(SmallSieve, i))
                    384:                                continue; /* 2*i+smallbase is composite */
                    385:
                    386:                        /* The next small prime */
                    387:                        sieve_large((2 * i) + smallbase);
                    388:                }
                    389:
                    390:                memset(SmallSieve, 0, smallwords << SHIFT_BYTE);
                    391:        }
                    392:
                    393:        time(&time_stop);
                    394:
                    395:        logit("%.24s Sieved with %u small primes in %ld seconds",
                    396:            ctime(&time_stop), largetries, (long) (time_stop - time_start));
                    397:
                    398:        for (j = r = 0; j < largebits; j++) {
                    399:                if (BIT_TEST(LargeSieve, j))
                    400:                        continue; /* Definitely composite, skip */
                    401:
                    402:                debug2("test q = largebase+%u", 2 * j);
                    403:                BN_set_word(q, 2 * j);
                    404:                BN_add(q, q, largebase);
                    405:                if (qfileout(out, QTYPE_SOPHIE_GERMAINE, QTEST_SIEVE,
                    406:                    largetries, (power - 1) /* MSB */, (0), q) == -1) {
                    407:                        ret = -1;
                    408:                        break;
                    409:                }
                    410:
                    411:                r++; /* count q */
                    412:        }
                    413:
                    414:        time(&time_stop);
                    415:
                    416:        xfree(LargeSieve);
                    417:        xfree(SmallSieve);
                    418:        xfree(TinySieve);
                    419:
                    420:        logit("%.24s Found %u candidates", ctime(&time_stop), r);
                    421:
                    422:        return (ret);
                    423: }
                    424:
                    425: /*
                    426:  * perform a Miller-Rabin primality test
                    427:  * on the list of candidates
                    428:  * (checking both q and p)
                    429:  * The result is a list of so-call "safe" primes
                    430:  */
                    431: int
1.2       djm       432: prime_test(FILE *in, FILE *out, u_int32_t trials,
1.1       djm       433:     u_int32_t generator_wanted)
                    434: {
                    435:        BIGNUM *q, *p, *a;
                    436:        BN_CTX *ctx;
                    437:        char *cp, *lp;
                    438:        u_int32_t count_in = 0, count_out = 0, count_possible = 0;
                    439:        u_int32_t generator_known, in_tests, in_tries, in_type, in_size;
                    440:        time_t time_start, time_stop;
                    441:        int res;
                    442:
                    443:        time(&time_start);
                    444:
                    445:        p = BN_new();
                    446:        q = BN_new();
                    447:        ctx = BN_CTX_new();
                    448:
                    449:        debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
                    450:            ctime(&time_start), trials, generator_wanted);
                    451:
                    452:        res = 0;
                    453:        lp = xmalloc(QLINESIZE + 1);
                    454:        while (fgets(lp, QLINESIZE, in) != NULL) {
                    455:                int ll = strlen(lp);
                    456:
                    457:                count_in++;
                    458:                if (ll < 14 || *lp == '!' || *lp == '#') {
                    459:                        debug2("%10u: comment or short line", count_in);
                    460:                        continue;
                    461:                }
                    462:
                    463:                /* XXX - fragile parser */
                    464:                /* time */
                    465:                cp = &lp[14];   /* (skip) */
                    466:
                    467:                /* type */
                    468:                in_type = strtoul(cp, &cp, 10);
                    469:
                    470:                /* tests */
                    471:                in_tests = strtoul(cp, &cp, 10);
                    472:
                    473:                if (in_tests & QTEST_COMPOSITE) {
                    474:                        debug2("%10u: known composite", count_in);
                    475:                        continue;
                    476:                }
                    477:                /* tries */
                    478:                in_tries = strtoul(cp, &cp, 10);
                    479:
                    480:                /* size (most significant bit) */
                    481:                in_size = strtoul(cp, &cp, 10);
                    482:
                    483:                /* generator (hex) */
                    484:                generator_known = strtoul(cp, &cp, 16);
                    485:
                    486:                /* Skip white space */
                    487:                cp += strspn(cp, " ");
                    488:
                    489:                /* modulus (hex) */
                    490:                switch (in_type) {
                    491:                case QTYPE_SOPHIE_GERMAINE:
                    492:                        debug2("%10u: (%u) Sophie-Germaine", count_in, in_type);
                    493:                        a = q;
                    494:                        BN_hex2bn(&a, cp);
                    495:                        /* p = 2*q + 1 */
                    496:                        BN_lshift(p, q, 1);
                    497:                        BN_add_word(p, 1);
                    498:                        in_size += 1;
                    499:                        generator_known = 0;
                    500:                        break;
                    501:                default:
                    502:                        debug2("%10u: (%u)", count_in, in_type);
                    503:                        a = p;
                    504:                        BN_hex2bn(&a, cp);
                    505:                        /* q = (p-1) / 2 */
                    506:                        BN_rshift(q, p, 1);
                    507:                        break;
                    508:                }
                    509:
                    510:                /*
                    511:                 * due to earlier inconsistencies in interpretation, check
                    512:                 * the proposed bit size.
                    513:                 */
                    514:                if (BN_num_bits(p) != (in_size + 1)) {
                    515:                        debug2("%10u: bit size %u mismatch", count_in, in_size);
                    516:                        continue;
                    517:                }
                    518:                if (in_size < QSIZE_MINIMUM) {
                    519:                        debug2("%10u: bit size %u too short", count_in, in_size);
                    520:                        continue;
                    521:                }
                    522:
                    523:                if (in_tests & QTEST_MILLER_RABIN)
                    524:                        in_tries += trials;
                    525:                else
                    526:                        in_tries = trials;
                    527:                /*
                    528:                 * guess unknown generator
                    529:                 */
                    530:                if (generator_known == 0) {
                    531:                        if (BN_mod_word(p, 24) == 11)
                    532:                                generator_known = 2;
                    533:                        else if (BN_mod_word(p, 12) == 5)
                    534:                                generator_known = 3;
                    535:                        else {
                    536:                                u_int32_t r = BN_mod_word(p, 10);
                    537:
                    538:                                if (r == 3 || r == 7) {
                    539:                                        generator_known = 5;
                    540:                                }
                    541:                        }
                    542:                }
                    543:                /*
                    544:                 * skip tests when desired generator doesn't match
                    545:                 */
                    546:                if (generator_wanted > 0 &&
                    547:                    generator_wanted != generator_known) {
                    548:                        debug2("%10u: generator %d != %d",
                    549:                            count_in, generator_known, generator_wanted);
1.4     ! dtucker   550:                        continue;
        !           551:                }
        !           552:
        !           553:                /*
        !           554:                 * Primes with no known generator are useless for DH, so
        !           555:                 * skip those.
        !           556:                 */
        !           557:                if (generator_known == 0) {
        !           558:                        debug2("%10u: no known generator", count_in);
1.1       djm       559:                        continue;
                    560:                }
                    561:
                    562:                count_possible++;
                    563:
                    564:                /*
1.2       djm       565:                 * The (1/4)^N performance bound on Miller-Rabin is
                    566:                 * extremely pessimistic, so don't spend a lot of time
                    567:                 * really verifying that q is prime until after we know
                    568:                 * that p is also prime. A single pass will weed out the
1.1       djm       569:                 * vast majority of composite q's.
                    570:                 */
                    571:                if (BN_is_prime(q, 1, NULL, ctx, NULL) <= 0) {
                    572:                        debug2("%10u: q failed first possible prime test",
                    573:                            count_in);
                    574:                        continue;
                    575:                }
1.2       djm       576:
1.1       djm       577:                /*
1.2       djm       578:                 * q is possibly prime, so go ahead and really make sure
                    579:                 * that p is prime. If it is, then we can go back and do
                    580:                 * the same for q. If p is composite, chances are that
1.1       djm       581:                 * will show up on the first Rabin-Miller iteration so it
                    582:                 * doesn't hurt to specify a high iteration count.
                    583:                 */
                    584:                if (!BN_is_prime(p, trials, NULL, ctx, NULL)) {
                    585:                        debug2("%10u: p is not prime", count_in);
                    586:                        continue;
                    587:                }
                    588:                debug("%10u: p is almost certainly prime", count_in);
                    589:
                    590:                /* recheck q more rigorously */
                    591:                if (!BN_is_prime(q, trials - 1, NULL, ctx, NULL)) {
                    592:                        debug("%10u: q is not prime", count_in);
                    593:                        continue;
                    594:                }
                    595:                debug("%10u: q is almost certainly prime", count_in);
                    596:
1.2       djm       597:                if (qfileout(out, QTYPE_SAFE, (in_tests | QTEST_MILLER_RABIN),
1.1       djm       598:                    in_tries, in_size, generator_known, p)) {
                    599:                        res = -1;
                    600:                        break;
                    601:                }
                    602:
                    603:                count_out++;
                    604:        }
                    605:
                    606:        time(&time_stop);
                    607:        xfree(lp);
                    608:        BN_free(p);
                    609:        BN_free(q);
                    610:        BN_CTX_free(ctx);
                    611:
                    612:        logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
1.2       djm       613:            ctime(&time_stop), count_out, count_possible,
1.1       djm       614:            (long) (time_stop - time_start));
                    615:
                    616:        return (res);
                    617: }