[BACK]Return to umac.c CVS log [TXT][DIR] Up to [local] / src / usr.bin / ssh

Annotation of src/usr.bin/ssh/umac.c, Revision 1.1

1.1     ! pvalchev    1: /* $OpenBSD$ */
        !             2: /* -----------------------------------------------------------------------
        !             3:  *
        !             4:  * umac.c -- C Implementation UMAC Message Authentication
        !             5:  *
        !             6:  * Version 0.93b of rfc4418.txt -- 2006 July 18
        !             7:  *
        !             8:  * For a full description of UMAC message authentication see the UMAC
        !             9:  * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
        !            10:  * Please report bugs and suggestions to the UMAC webpage.
        !            11:  *
        !            12:  * Copyright (c) 1999-2006 Ted Krovetz
        !            13:  *
        !            14:  * Permission to use, copy, modify, and distribute this software and
        !            15:  * its documentation for any purpose and with or without fee, is hereby
        !            16:  * granted provided that the above copyright notice appears in all copies
        !            17:  * and in supporting documentation, and that the name of the copyright
        !            18:  * holder not be used in advertising or publicity pertaining to
        !            19:  * distribution of the software without specific, written prior permission.
        !            20:  *
        !            21:  * Comments should be directed to Ted Krovetz (tdk@acm.org)
        !            22:  *
        !            23:  * ---------------------------------------------------------------------- */
        !            24:
        !            25:  /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
        !            26:   *
        !            27:   * 1) This version does not work properly on messages larger than 16MB
        !            28:   *
        !            29:   * 2) If you set the switch to use SSE2, then all data must be 16-byte
        !            30:   *    aligned
        !            31:   *
        !            32:   * 3) When calling the function umac(), it is assumed that msg is in
        !            33:   * a writable buffer of length divisible by 32 bytes. The message itself
        !            34:   * does not have to fill the entire buffer, but bytes beyond msg may be
        !            35:   * zeroed.
        !            36:   *
        !            37:   * 4) Three free AES implementations are supported by this implementation of
        !            38:   * UMAC. Paulo Barreto's version is in the public domain and can be found
        !            39:   * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
        !            40:   * "Barreto"). The only two files needed are rijndael-alg-fst.c and
        !            41:   * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
        !            42:   * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It
        !            43:   * includes a fast IA-32 assembly version. The OpenSSL crypo library is
        !            44:   * the third.
        !            45:   *
        !            46:   * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
        !            47:   * produced under gcc with optimizations set -O3 or higher. Dunno why.
        !            48:   *
        !            49:   /////////////////////////////////////////////////////////////////////// */
        !            50:
        !            51: /* ---------------------------------------------------------------------- */
        !            52: /* --- User Switches ---------------------------------------------------- */
        !            53: /* ---------------------------------------------------------------------- */
        !            54:
        !            55: #define UMAC_OUTPUT_LEN     8  /* Alowable: 4, 8, 12, 16                  */
        !            56: /* #define FORCE_C_ONLY        1  ANSI C and 64-bit integers req'd        */
        !            57: /* #define AES_IMPLEMENTAION   1  1 = OpenSSL, 2 = Barreto, 3 = Gladman   */
        !            58: /* #define SSE2                0  Is SSE2 is available?                   */
        !            59: /* #define RUN_TESTS           0  Run basic correctness/speed tests       */
        !            60: /* #define UMAC_AE_SUPPORT     0  Enable auhthenticated encrytion         */
        !            61:
        !            62: /* ---------------------------------------------------------------------- */
        !            63: /* -- Global Includes --------------------------------------------------- */
        !            64: /* ---------------------------------------------------------------------- */
        !            65:
        !            66: #include <sys/types.h>
        !            67: #include <sys/endian.h>
        !            68:
        !            69: #include "umac.h"
        !            70: #include <string.h>
        !            71: #include <stdlib.h>
        !            72: #include <stddef.h>
        !            73:
        !            74: /* ---------------------------------------------------------------------- */
        !            75: /* --- Primitive Data Types ---                                           */
        !            76: /* ---------------------------------------------------------------------- */
        !            77:
        !            78: /* The following assumptions may need change on your system */
        !            79: typedef u_int8_t       UINT8;  /* 1 byte   */
        !            80: typedef u_int16_t      UINT16; /* 2 byte   */
        !            81: typedef u_int32_t      UINT32; /* 4 byte   */
        !            82: typedef u_int64_t      UINT64; /* 8 bytes  */
        !            83: typedef unsigned int   UWORD;  /* Register */
        !            84:
        !            85: /* ---------------------------------------------------------------------- */
        !            86: /* --- Constants -------------------------------------------------------- */
        !            87: /* ---------------------------------------------------------------------- */
        !            88:
        !            89: #define UMAC_KEY_LEN           16  /* UMAC takes 16 bytes of external key */
        !            90:
        !            91: /* Message "words" are read from memory in an endian-specific manner.     */
        !            92: /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must    */
        !            93: /* be set true if the host computer is little-endian.                     */
        !            94:
        !            95: #if BYTE_ORDER == LITTLE_ENDIAN
        !            96: #define __LITTLE_ENDIAN__ 1
        !            97: #else
        !            98: #define __LITTLE_ENDIAN__ 0
        !            99: #endif
        !           100:
        !           101: /* ---------------------------------------------------------------------- */
        !           102: /* ---------------------------------------------------------------------- */
        !           103: /* ----- Architecture Specific ------------------------------------------ */
        !           104: /* ---------------------------------------------------------------------- */
        !           105: /* ---------------------------------------------------------------------- */
        !           106:
        !           107:
        !           108: /* ---------------------------------------------------------------------- */
        !           109: /* ---------------------------------------------------------------------- */
        !           110: /* ----- Primitive Routines --------------------------------------------- */
        !           111: /* ---------------------------------------------------------------------- */
        !           112: /* ---------------------------------------------------------------------- */
        !           113:
        !           114:
        !           115: /* ---------------------------------------------------------------------- */
        !           116: /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
        !           117: /* ---------------------------------------------------------------------- */
        !           118:
        !           119: #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
        !           120:
        !           121: /* ---------------------------------------------------------------------- */
        !           122: /* --- Endian Conversion --- Forcing assembly on some platforms           */
        !           123: /* ---------------------------------------------------------------------- */
        !           124:
        !           125: #if 0
        !           126: static UINT32 LOAD_UINT32_REVERSED(void *ptr)
        !           127: {
        !           128:     UINT32 temp = *(UINT32 *)ptr;
        !           129:     temp = (temp >> 24) | ((temp & 0x00FF0000) >> 8 )
        !           130:          | ((temp & 0x0000FF00) << 8 ) | (temp << 24);
        !           131:     return (UINT32)temp;
        !           132: }
        !           133:
        !           134: static void STORE_UINT32_REVERSED(void *ptr, UINT32 x)
        !           135: {
        !           136:     UINT32 i = (UINT32)x;
        !           137:     *(UINT32 *)ptr = (i >> 24) | ((i & 0x00FF0000) >> 8 )
        !           138:                    | ((i & 0x0000FF00) << 8 ) | (i << 24);
        !           139: }
        !           140: #endif
        !           141:
        !           142: /* The following definitions use the above reversal-primitives to do the right
        !           143:  * thing on endian specific load and stores.
        !           144:  */
        !           145:
        !           146: #define LOAD_UINT32_REVERSED(p)                (swap32(*(UINT32 *)(p)))
        !           147: #define STORE_UINT32_REVERSED(p,v)     (*(UINT32 *)(p) = swap32(v))
        !           148:
        !           149: #if (__LITTLE_ENDIAN__)
        !           150: #define LOAD_UINT32_LITTLE(ptr)     (*(UINT32 *)(ptr))
        !           151: #define STORE_UINT32_BIG(ptr,x)     STORE_UINT32_REVERSED(ptr,x)
        !           152: #else
        !           153: #define LOAD_UINT32_LITTLE(ptr)     LOAD_UINT32_REVERSED(ptr)
        !           154: #define STORE_UINT32_BIG(ptr,x)     (*(UINT32 *)(ptr) = (UINT32)(x))
        !           155: #endif
        !           156:
        !           157:
        !           158:
        !           159: /* ---------------------------------------------------------------------- */
        !           160: /* ---------------------------------------------------------------------- */
        !           161: /* ----- Begin KDF & PDF Section ---------------------------------------- */
        !           162: /* ---------------------------------------------------------------------- */
        !           163: /* ---------------------------------------------------------------------- */
        !           164:
        !           165: /* UMAC uses AES with 16 byte block and key lengths */
        !           166: #define AES_BLOCK_LEN  16
        !           167:
        !           168: /* OpenSSL's AES */
        !           169: #include <openssl/aes.h>
        !           170: typedef AES_KEY aes_int_key[1];
        !           171: #define aes_encryption(in,out,int_key)                  \
        !           172:   AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
        !           173: #define aes_key_setup(key,int_key)                      \
        !           174:   AES_set_encrypt_key((u_char *)(key),UMAC_KEY_LEN*8,int_key)
        !           175:
        !           176: /* The user-supplied UMAC key is stretched using AES in a counter
        !           177:  * mode to supply all random bits needed by UMAC. The kdf function takes
        !           178:  * an AES internal key representation 'key' and writes a stream of
        !           179:  * 'nbytes' bytes to the memory pointed at by 'buffer_ptr'. Each distinct
        !           180:  * 'ndx' causes a distinct byte stream.
        !           181:  */
        !           182: static void kdf(void *buffer_ptr, aes_int_key key, UINT8 ndx, int nbytes)
        !           183: {
        !           184:     UINT8 in_buf[AES_BLOCK_LEN] = {0};
        !           185:     UINT8 out_buf[AES_BLOCK_LEN];
        !           186:     UINT8 *dst_buf = (UINT8 *)buffer_ptr;
        !           187:     int i;
        !           188:
        !           189:     /* Setup the initial value */
        !           190:     in_buf[AES_BLOCK_LEN-9] = ndx;
        !           191:     in_buf[AES_BLOCK_LEN-1] = i = 1;
        !           192:
        !           193:     while (nbytes >= AES_BLOCK_LEN) {
        !           194:         aes_encryption(in_buf, out_buf, key);
        !           195:         memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
        !           196:         in_buf[AES_BLOCK_LEN-1] = ++i;
        !           197:         nbytes -= AES_BLOCK_LEN;
        !           198:         dst_buf += AES_BLOCK_LEN;
        !           199:     }
        !           200:     if (nbytes) {
        !           201:         aes_encryption(in_buf, out_buf, key);
        !           202:         memcpy(dst_buf,out_buf,nbytes);
        !           203:     }
        !           204: }
        !           205:
        !           206: /* The final UHASH result is XOR'd with the output of a pseudorandom
        !           207:  * function. Here, we use AES to generate random output and
        !           208:  * xor the appropriate bytes depending on the last bits of nonce.
        !           209:  * This scheme is optimized for sequential, increasing big-endian nonces.
        !           210:  */
        !           211:
        !           212: typedef struct {
        !           213:     UINT8 cache[AES_BLOCK_LEN];  /* Previous AES output is saved      */
        !           214:     UINT8 nonce[AES_BLOCK_LEN];  /* The AES input making above cache  */
        !           215:     aes_int_key prf_key;         /* Expanded AES key for PDF          */
        !           216: } pdf_ctx;
        !           217:
        !           218: static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
        !           219: {
        !           220:     UINT8 buf[UMAC_KEY_LEN];
        !           221:
        !           222:     kdf(buf, prf_key, 0, UMAC_KEY_LEN);
        !           223:     aes_key_setup(buf, pc->prf_key);
        !           224:
        !           225:     /* Initialize pdf and cache */
        !           226:     memset(pc->nonce, 0, sizeof(pc->nonce));
        !           227:     aes_encryption(pc->nonce, pc->cache, pc->prf_key);
        !           228: }
        !           229:
        !           230: static void pdf_gen_xor(pdf_ctx *pc, UINT8 nonce[8], UINT8 buf[8])
        !           231: {
        !           232:     /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
        !           233:      * of the AES output. If last time around we returned the ndx-1st
        !           234:      * element, then we may have the result in the cache already.
        !           235:      */
        !           236:
        !           237: #if (UMAC_OUTPUT_LEN == 4)
        !           238: #define LOW_BIT_MASK 3
        !           239: #elif (UMAC_OUTPUT_LEN == 8)
        !           240: #define LOW_BIT_MASK 1
        !           241: #elif (UMAC_OUTPUT_LEN > 8)
        !           242: #define LOW_BIT_MASK 0
        !           243: #endif
        !           244:
        !           245:     UINT8 tmp_nonce_lo[4];
        !           246: #if LOW_BIT_MASK != 0
        !           247:     int ndx = nonce[7] & LOW_BIT_MASK;
        !           248: #endif
        !           249:     *(UINT32 *)tmp_nonce_lo = ((UINT32 *)nonce)[1];
        !           250:     tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
        !           251:
        !           252:     if ( (((UINT32 *)tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) ||
        !           253:          (((UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) )
        !           254:     {
        !           255:         ((UINT32 *)pc->nonce)[0] = ((UINT32 *)nonce)[0];
        !           256:         ((UINT32 *)pc->nonce)[1] = ((UINT32 *)tmp_nonce_lo)[0];
        !           257:         aes_encryption(pc->nonce, pc->cache, pc->prf_key);
        !           258:     }
        !           259:
        !           260: #if (UMAC_OUTPUT_LEN == 4)
        !           261:     *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx];
        !           262: #elif (UMAC_OUTPUT_LEN == 8)
        !           263:     *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx];
        !           264: #elif (UMAC_OUTPUT_LEN == 12)
        !           265:     ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
        !           266:     ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2];
        !           267: #elif (UMAC_OUTPUT_LEN == 16)
        !           268:     ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
        !           269:     ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1];
        !           270: #endif
        !           271: }
        !           272:
        !           273: /* ---------------------------------------------------------------------- */
        !           274: /* ---------------------------------------------------------------------- */
        !           275: /* ----- Begin NH Hash Section ------------------------------------------ */
        !           276: /* ---------------------------------------------------------------------- */
        !           277: /* ---------------------------------------------------------------------- */
        !           278:
        !           279: /* The NH-based hash functions used in UMAC are described in the UMAC paper
        !           280:  * and specification, both of which can be found at the UMAC website.
        !           281:  * The interface to this implementation has two
        !           282:  * versions, one expects the entire message being hashed to be passed
        !           283:  * in a single buffer and returns the hash result immediately. The second
        !           284:  * allows the message to be passed in a sequence of buffers. In the
        !           285:  * muliple-buffer interface, the client calls the routine nh_update() as
        !           286:  * many times as necessary. When there is no more data to be fed to the
        !           287:  * hash, the client calls nh_final() which calculates the hash output.
        !           288:  * Before beginning another hash calculation the nh_reset() routine
        !           289:  * must be called. The single-buffer routine, nh(), is equivalent to
        !           290:  * the sequence of calls nh_update() and nh_final(); however it is
        !           291:  * optimized and should be prefered whenever the multiple-buffer interface
        !           292:  * is not necessary. When using either interface, it is the client's
        !           293:  * responsability to pass no more than L1_KEY_LEN bytes per hash result.
        !           294:  *
        !           295:  * The routine nh_init() initializes the nh_ctx data structure and
        !           296:  * must be called once, before any other PDF routine.
        !           297:  */
        !           298:
        !           299:  /* The "nh_aux" routines do the actual NH hashing work. They
        !           300:   * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
        !           301:   * produce output for all STREAMS NH iterations in one call,
        !           302:   * allowing the parallel implementation of the streams.
        !           303:   */
        !           304:
        !           305: #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied  */
        !           306: #define L1_KEY_LEN         1024     /* Internal key bytes                 */
        !           307: #define L1_KEY_SHIFT         16     /* Toeplitz key shift between streams */
        !           308: #define L1_PAD_BOUNDARY      32     /* pad message to boundary multiple   */
        !           309: #define ALLOC_BOUNDARY       16     /* Keep buffers aligned to this       */
        !           310: #define HASH_BUF_BYTES       64     /* nh_aux_hb buffer multiple          */
        !           311:
        !           312: typedef struct {
        !           313:     UINT8  nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */
        !           314:     UINT8  data   [HASH_BUF_BYTES];    /* Incomming data buffer           */
        !           315:     int next_data_empty;    /* Bookeeping variable for data buffer.       */
        !           316:     int bytes_hashed;        /* Bytes (out of L1_KEY_LEN) incorperated.   */
        !           317:     UINT64 state[STREAMS];               /* on-line state     */
        !           318: } nh_ctx;
        !           319:
        !           320:
        !           321: #if (UMAC_OUTPUT_LEN == 4)
        !           322:
        !           323: static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
        !           324: /* NH hashing primitive. Previous (partial) hash result is loaded and
        !           325: * then stored via hp pointer. The length of the data pointed at by "dp",
        !           326: * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32).  Key
        !           327: * is expected to be endian compensated in memory at key setup.
        !           328: */
        !           329: {
        !           330:     UINT64 h;
        !           331:     UWORD c = dlen / 32;
        !           332:     UINT32 *k = (UINT32 *)kp;
        !           333:     UINT32 *d = (UINT32 *)dp;
        !           334:     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
        !           335:     UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
        !           336:
        !           337:     h = *((UINT64 *)hp);
        !           338:     do {
        !           339:         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
        !           340:         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
        !           341:         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
        !           342:         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
        !           343:         k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
        !           344:         k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
        !           345:         h += MUL64((k0 + d0), (k4 + d4));
        !           346:         h += MUL64((k1 + d1), (k5 + d5));
        !           347:         h += MUL64((k2 + d2), (k6 + d6));
        !           348:         h += MUL64((k3 + d3), (k7 + d7));
        !           349:
        !           350:         d += 8;
        !           351:         k += 8;
        !           352:     } while (--c);
        !           353:   *((UINT64 *)hp) = h;
        !           354: }
        !           355:
        !           356: #elif (UMAC_OUTPUT_LEN == 8)
        !           357:
        !           358: static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
        !           359: /* Same as previous nh_aux, but two streams are handled in one pass,
        !           360:  * reading and writing 16 bytes of hash-state per call.
        !           361:  */
        !           362: {
        !           363:   UINT64 h1,h2;
        !           364:   UWORD c = dlen / 32;
        !           365:   UINT32 *k = (UINT32 *)kp;
        !           366:   UINT32 *d = (UINT32 *)dp;
        !           367:   UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
        !           368:   UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
        !           369:         k8,k9,k10,k11;
        !           370:
        !           371:   h1 = *((UINT64 *)hp);
        !           372:   h2 = *((UINT64 *)hp + 1);
        !           373:   k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
        !           374:   do {
        !           375:     d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
        !           376:     d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
        !           377:     d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
        !           378:     d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
        !           379:     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
        !           380:     k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
        !           381:
        !           382:     h1 += MUL64((k0 + d0), (k4 + d4));
        !           383:     h2 += MUL64((k4 + d0), (k8 + d4));
        !           384:
        !           385:     h1 += MUL64((k1 + d1), (k5 + d5));
        !           386:     h2 += MUL64((k5 + d1), (k9 + d5));
        !           387:
        !           388:     h1 += MUL64((k2 + d2), (k6 + d6));
        !           389:     h2 += MUL64((k6 + d2), (k10 + d6));
        !           390:
        !           391:     h1 += MUL64((k3 + d3), (k7 + d7));
        !           392:     h2 += MUL64((k7 + d3), (k11 + d7));
        !           393:
        !           394:     k0 = k8; k1 = k9; k2 = k10; k3 = k11;
        !           395:
        !           396:     d += 8;
        !           397:     k += 8;
        !           398:   } while (--c);
        !           399:   ((UINT64 *)hp)[0] = h1;
        !           400:   ((UINT64 *)hp)[1] = h2;
        !           401: }
        !           402:
        !           403: #elif (UMAC_OUTPUT_LEN == 12)
        !           404:
        !           405: static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
        !           406: /* Same as previous nh_aux, but two streams are handled in one pass,
        !           407:  * reading and writing 24 bytes of hash-state per call.
        !           408: */
        !           409: {
        !           410:     UINT64 h1,h2,h3;
        !           411:     UWORD c = dlen / 32;
        !           412:     UINT32 *k = (UINT32 *)kp;
        !           413:     UINT32 *d = (UINT32 *)dp;
        !           414:     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
        !           415:     UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
        !           416:         k8,k9,k10,k11,k12,k13,k14,k15;
        !           417:
        !           418:     h1 = *((UINT64 *)hp);
        !           419:     h2 = *((UINT64 *)hp + 1);
        !           420:     h3 = *((UINT64 *)hp + 2);
        !           421:     k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
        !           422:     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
        !           423:     do {
        !           424:         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
        !           425:         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
        !           426:         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
        !           427:         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
        !           428:         k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
        !           429:         k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
        !           430:
        !           431:         h1 += MUL64((k0 + d0), (k4 + d4));
        !           432:         h2 += MUL64((k4 + d0), (k8 + d4));
        !           433:         h3 += MUL64((k8 + d0), (k12 + d4));
        !           434:
        !           435:         h1 += MUL64((k1 + d1), (k5 + d5));
        !           436:         h2 += MUL64((k5 + d1), (k9 + d5));
        !           437:         h3 += MUL64((k9 + d1), (k13 + d5));
        !           438:
        !           439:         h1 += MUL64((k2 + d2), (k6 + d6));
        !           440:         h2 += MUL64((k6 + d2), (k10 + d6));
        !           441:         h3 += MUL64((k10 + d2), (k14 + d6));
        !           442:
        !           443:         h1 += MUL64((k3 + d3), (k7 + d7));
        !           444:         h2 += MUL64((k7 + d3), (k11 + d7));
        !           445:         h3 += MUL64((k11 + d3), (k15 + d7));
        !           446:
        !           447:         k0 = k8; k1 = k9; k2 = k10; k3 = k11;
        !           448:         k4 = k12; k5 = k13; k6 = k14; k7 = k15;
        !           449:
        !           450:         d += 8;
        !           451:         k += 8;
        !           452:     } while (--c);
        !           453:     ((UINT64 *)hp)[0] = h1;
        !           454:     ((UINT64 *)hp)[1] = h2;
        !           455:     ((UINT64 *)hp)[2] = h3;
        !           456: }
        !           457:
        !           458: #elif (UMAC_OUTPUT_LEN == 16)
        !           459:
        !           460: static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
        !           461: /* Same as previous nh_aux, but two streams are handled in one pass,
        !           462:  * reading and writing 24 bytes of hash-state per call.
        !           463: */
        !           464: {
        !           465:     UINT64 h1,h2,h3,h4;
        !           466:     UWORD c = dlen / 32;
        !           467:     UINT32 *k = (UINT32 *)kp;
        !           468:     UINT32 *d = (UINT32 *)dp;
        !           469:     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
        !           470:     UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
        !           471:         k8,k9,k10,k11,k12,k13,k14,k15,
        !           472:         k16,k17,k18,k19;
        !           473:
        !           474:     h1 = *((UINT64 *)hp);
        !           475:     h2 = *((UINT64 *)hp + 1);
        !           476:     h3 = *((UINT64 *)hp + 2);
        !           477:     h4 = *((UINT64 *)hp + 3);
        !           478:     k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
        !           479:     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
        !           480:     do {
        !           481:         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
        !           482:         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
        !           483:         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
        !           484:         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
        !           485:         k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
        !           486:         k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
        !           487:         k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
        !           488:
        !           489:         h1 += MUL64((k0 + d0), (k4 + d4));
        !           490:         h2 += MUL64((k4 + d0), (k8 + d4));
        !           491:         h3 += MUL64((k8 + d0), (k12 + d4));
        !           492:         h4 += MUL64((k12 + d0), (k16 + d4));
        !           493:
        !           494:         h1 += MUL64((k1 + d1), (k5 + d5));
        !           495:         h2 += MUL64((k5 + d1), (k9 + d5));
        !           496:         h3 += MUL64((k9 + d1), (k13 + d5));
        !           497:         h4 += MUL64((k13 + d1), (k17 + d5));
        !           498:
        !           499:         h1 += MUL64((k2 + d2), (k6 + d6));
        !           500:         h2 += MUL64((k6 + d2), (k10 + d6));
        !           501:         h3 += MUL64((k10 + d2), (k14 + d6));
        !           502:         h4 += MUL64((k14 + d2), (k18 + d6));
        !           503:
        !           504:         h1 += MUL64((k3 + d3), (k7 + d7));
        !           505:         h2 += MUL64((k7 + d3), (k11 + d7));
        !           506:         h3 += MUL64((k11 + d3), (k15 + d7));
        !           507:         h4 += MUL64((k15 + d3), (k19 + d7));
        !           508:
        !           509:         k0 = k8; k1 = k9; k2 = k10; k3 = k11;
        !           510:         k4 = k12; k5 = k13; k6 = k14; k7 = k15;
        !           511:         k8 = k16; k9 = k17; k10 = k18; k11 = k19;
        !           512:
        !           513:         d += 8;
        !           514:         k += 8;
        !           515:     } while (--c);
        !           516:     ((UINT64 *)hp)[0] = h1;
        !           517:     ((UINT64 *)hp)[1] = h2;
        !           518:     ((UINT64 *)hp)[2] = h3;
        !           519:     ((UINT64 *)hp)[3] = h4;
        !           520: }
        !           521:
        !           522: /* ---------------------------------------------------------------------- */
        !           523: #endif  /* UMAC_OUTPUT_LENGTH */
        !           524: /* ---------------------------------------------------------------------- */
        !           525:
        !           526:
        !           527: /* ---------------------------------------------------------------------- */
        !           528:
        !           529: static void nh_transform(nh_ctx *hc, UINT8 *buf, UINT32 nbytes)
        !           530: /* This function is a wrapper for the primitive NH hash functions. It takes
        !           531:  * as argument "hc" the current hash context and a buffer which must be a
        !           532:  * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
        !           533:  * appropriately according to how much message has been hashed already.
        !           534:  */
        !           535: {
        !           536:     UINT8 *key;
        !           537:
        !           538:     key = hc->nh_key + hc->bytes_hashed;
        !           539:     nh_aux(key, buf, hc->state, nbytes);
        !           540: }
        !           541:
        !           542: /* ---------------------------------------------------------------------- */
        !           543:
        !           544: static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)
        !           545: /* We endian convert the keys on little-endian computers to               */
        !           546: /* compensate for the lack of big-endian memory reads during hashing.     */
        !           547: {
        !           548:     UWORD iters = num_bytes / bpw;
        !           549:     if (bpw == 4) {
        !           550:         UINT32 *p = (UINT32 *)buf;
        !           551:         do {
        !           552:             *p = LOAD_UINT32_REVERSED(p);
        !           553:             p++;
        !           554:         } while (--iters);
        !           555:     } else if (bpw == 8) {
        !           556:         UINT32 *p = (UINT32 *)buf;
        !           557:         UINT32 t;
        !           558:         do {
        !           559:             t = LOAD_UINT32_REVERSED(p+1);
        !           560:             p[1] = LOAD_UINT32_REVERSED(p);
        !           561:             p[0] = t;
        !           562:             p += 2;
        !           563:         } while (--iters);
        !           564:     }
        !           565: }
        !           566: #if (__LITTLE_ENDIAN__)
        !           567: #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
        !           568: #else
        !           569: #define endian_convert_if_le(x,y,z) do{}while(0)  /* Do nothing */
        !           570: #endif
        !           571:
        !           572: /* ---------------------------------------------------------------------- */
        !           573:
        !           574: static void nh_reset(nh_ctx *hc)
        !           575: /* Reset nh_ctx to ready for hashing of new data */
        !           576: {
        !           577:     hc->bytes_hashed = 0;
        !           578:     hc->next_data_empty = 0;
        !           579:     hc->state[0] = 0;
        !           580: #if (UMAC_OUTPUT_LEN >= 8)
        !           581:     hc->state[1] = 0;
        !           582: #endif
        !           583: #if (UMAC_OUTPUT_LEN >= 12)
        !           584:     hc->state[2] = 0;
        !           585: #endif
        !           586: #if (UMAC_OUTPUT_LEN == 16)
        !           587:     hc->state[3] = 0;
        !           588: #endif
        !           589:
        !           590: }
        !           591:
        !           592: /* ---------------------------------------------------------------------- */
        !           593:
        !           594: static void nh_init(nh_ctx *hc, aes_int_key prf_key)
        !           595: /* Generate nh_key, endian convert and reset to be ready for hashing.   */
        !           596: {
        !           597:     kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));
        !           598:     endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key));
        !           599:     nh_reset(hc);
        !           600: }
        !           601:
        !           602: /* ---------------------------------------------------------------------- */
        !           603:
        !           604: static void nh_update(nh_ctx *hc, UINT8 *buf, UINT32 nbytes)
        !           605: /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an    */
        !           606: /* even multiple of HASH_BUF_BYTES.                                       */
        !           607: {
        !           608:     UINT32 i,j;
        !           609:
        !           610:     j = hc->next_data_empty;
        !           611:     if ((j + nbytes) >= HASH_BUF_BYTES) {
        !           612:         if (j) {
        !           613:             i = HASH_BUF_BYTES - j;
        !           614:             memcpy(hc->data+j, buf, i);
        !           615:             nh_transform(hc,hc->data,HASH_BUF_BYTES);
        !           616:             nbytes -= i;
        !           617:             buf += i;
        !           618:             hc->bytes_hashed += HASH_BUF_BYTES;
        !           619:         }
        !           620:         if (nbytes >= HASH_BUF_BYTES) {
        !           621:             i = nbytes & ~(HASH_BUF_BYTES - 1);
        !           622:             nh_transform(hc, buf, i);
        !           623:             nbytes -= i;
        !           624:             buf += i;
        !           625:             hc->bytes_hashed += i;
        !           626:         }
        !           627:         j = 0;
        !           628:     }
        !           629:     memcpy(hc->data + j, buf, nbytes);
        !           630:     hc->next_data_empty = j + nbytes;
        !           631: }
        !           632:
        !           633: /* ---------------------------------------------------------------------- */
        !           634:
        !           635: static void zero_pad(UINT8 *p, int nbytes)
        !           636: {
        !           637: /* Write "nbytes" of zeroes, beginning at "p" */
        !           638:     if (nbytes >= (int)sizeof(UWORD)) {
        !           639:         while ((ptrdiff_t)p % sizeof(UWORD)) {
        !           640:             *p = 0;
        !           641:             nbytes--;
        !           642:             p++;
        !           643:         }
        !           644:         while (nbytes >= (int)sizeof(UWORD)) {
        !           645:             *(UWORD *)p = 0;
        !           646:             nbytes -= sizeof(UWORD);
        !           647:             p += sizeof(UWORD);
        !           648:         }
        !           649:     }
        !           650:     while (nbytes) {
        !           651:         *p = 0;
        !           652:         nbytes--;
        !           653:         p++;
        !           654:     }
        !           655: }
        !           656:
        !           657: /* ---------------------------------------------------------------------- */
        !           658:
        !           659: static void nh_final(nh_ctx *hc, UINT8 *result)
        !           660: /* After passing some number of data buffers to nh_update() for integration
        !           661:  * into an NH context, nh_final is called to produce a hash result. If any
        !           662:  * bytes are in the buffer hc->data, incorporate them into the
        !           663:  * NH context. Finally, add into the NH accumulation "state" the total number
        !           664:  * of bits hashed. The resulting numbers are written to the buffer "result".
        !           665:  * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
        !           666:  */
        !           667: {
        !           668:     int nh_len, nbits;
        !           669:
        !           670:     if (hc->next_data_empty != 0) {
        !           671:         nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &
        !           672:                                                 ~(L1_PAD_BOUNDARY - 1));
        !           673:         zero_pad(hc->data + hc->next_data_empty,
        !           674:                                           nh_len - hc->next_data_empty);
        !           675:         nh_transform(hc, hc->data, nh_len);
        !           676:         hc->bytes_hashed += hc->next_data_empty;
        !           677:     } else if (hc->bytes_hashed == 0) {
        !           678:        nh_len = L1_PAD_BOUNDARY;
        !           679:         zero_pad(hc->data, L1_PAD_BOUNDARY);
        !           680:         nh_transform(hc, hc->data, nh_len);
        !           681:     }
        !           682:
        !           683:     nbits = (hc->bytes_hashed << 3);
        !           684:     ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;
        !           685: #if (UMAC_OUTPUT_LEN >= 8)
        !           686:     ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;
        !           687: #endif
        !           688: #if (UMAC_OUTPUT_LEN >= 12)
        !           689:     ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;
        !           690: #endif
        !           691: #if (UMAC_OUTPUT_LEN == 16)
        !           692:     ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;
        !           693: #endif
        !           694:     nh_reset(hc);
        !           695: }
        !           696:
        !           697: /* ---------------------------------------------------------------------- */
        !           698:
        !           699: static void nh(nh_ctx *hc, UINT8 *buf, UINT32 padded_len,
        !           700:                UINT32 unpadded_len, UINT8 *result)
        !           701: /* All-in-one nh_update() and nh_final() equivalent.
        !           702:  * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
        !           703:  * well aligned
        !           704:  */
        !           705: {
        !           706:     UINT32 nbits;
        !           707:
        !           708:     /* Initialize the hash state */
        !           709:     nbits = (unpadded_len << 3);
        !           710:
        !           711:     ((UINT64 *)result)[0] = nbits;
        !           712: #if (UMAC_OUTPUT_LEN >= 8)
        !           713:     ((UINT64 *)result)[1] = nbits;
        !           714: #endif
        !           715: #if (UMAC_OUTPUT_LEN >= 12)
        !           716:     ((UINT64 *)result)[2] = nbits;
        !           717: #endif
        !           718: #if (UMAC_OUTPUT_LEN == 16)
        !           719:     ((UINT64 *)result)[3] = nbits;
        !           720: #endif
        !           721:
        !           722:     nh_aux(hc->nh_key, buf, result, padded_len);
        !           723: }
        !           724:
        !           725: /* ---------------------------------------------------------------------- */
        !           726: /* ---------------------------------------------------------------------- */
        !           727: /* ----- Begin UHASH Section -------------------------------------------- */
        !           728: /* ---------------------------------------------------------------------- */
        !           729: /* ---------------------------------------------------------------------- */
        !           730:
        !           731: /* UHASH is a multi-layered algorithm. Data presented to UHASH is first
        !           732:  * hashed by NH. The NH output is then hashed by a polynomial-hash layer
        !           733:  * unless the initial data to be hashed is short. After the polynomial-
        !           734:  * layer, an inner-product hash is used to produce the final UHASH output.
        !           735:  *
        !           736:  * UHASH provides two interfaces, one all-at-once and another where data
        !           737:  * buffers are presented sequentially. In the sequential interface, the
        !           738:  * UHASH client calls the routine uhash_update() as many times as necessary.
        !           739:  * When there is no more data to be fed to UHASH, the client calls
        !           740:  * uhash_final() which
        !           741:  * calculates the UHASH output. Before beginning another UHASH calculation
        !           742:  * the uhash_reset() routine must be called. The all-at-once UHASH routine,
        !           743:  * uhash(), is equivalent to the sequence of calls uhash_update() and
        !           744:  * uhash_final(); however it is optimized and should be
        !           745:  * used whenever the sequential interface is not necessary.
        !           746:  *
        !           747:  * The routine uhash_init() initializes the uhash_ctx data structure and
        !           748:  * must be called once, before any other UHASH routine.
        !           749:  */
        !           750:
        !           751: /* ---------------------------------------------------------------------- */
        !           752: /* ----- Constants and uhash_ctx ---------------------------------------- */
        !           753: /* ---------------------------------------------------------------------- */
        !           754:
        !           755: /* ---------------------------------------------------------------------- */
        !           756: /* ----- Poly hash and Inner-Product hash Constants --------------------- */
        !           757: /* ---------------------------------------------------------------------- */
        !           758:
        !           759: /* Primes and masks */
        !           760: #define p36    ((UINT64)0x0000000FFFFFFFFBull)              /* 2^36 -  5 */
        !           761: #define p64    ((UINT64)0xFFFFFFFFFFFFFFC5ull)              /* 2^64 - 59 */
        !           762: #define m36    ((UINT64)0x0000000FFFFFFFFFull)  /* The low 36 of 64 bits */
        !           763:
        !           764:
        !           765: /* ---------------------------------------------------------------------- */
        !           766:
        !           767: typedef struct uhash_ctx {
        !           768:     nh_ctx hash;                          /* Hash context for L1 NH hash  */
        !           769:     UINT64 poly_key_8[STREAMS];           /* p64 poly keys                */
        !           770:     UINT64 poly_accum[STREAMS];           /* poly hash result             */
        !           771:     UINT64 ip_keys[STREAMS*4];            /* Inner-product keys           */
        !           772:     UINT32 ip_trans[STREAMS];             /* Inner-product translation    */
        !           773:     UINT32 msg_len;                       /* Total length of data passed  */
        !           774:                                           /* to uhash */
        !           775: } uhash_ctx;
        !           776: typedef struct uhash_ctx *uhash_ctx_t;
        !           777:
        !           778: /* ---------------------------------------------------------------------- */
        !           779:
        !           780:
        !           781: /* The polynomial hashes use Horner's rule to evaluate a polynomial one
        !           782:  * word at a time. As described in the specification, poly32 and poly64
        !           783:  * require keys from special domains. The following implementations exploit
        !           784:  * the special domains to avoid overflow. The results are not guaranteed to
        !           785:  * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
        !           786:  * patches any errant values.
        !           787:  */
        !           788:
        !           789: static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
        !           790: {
        !           791:     UINT32 key_hi = (UINT32)(key >> 32),
        !           792:            key_lo = (UINT32)key,
        !           793:            cur_hi = (UINT32)(cur >> 32),
        !           794:            cur_lo = (UINT32)cur,
        !           795:            x_lo,
        !           796:            x_hi;
        !           797:     UINT64 X,T,res;
        !           798:
        !           799:     X =  MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
        !           800:     x_lo = (UINT32)X;
        !           801:     x_hi = (UINT32)(X >> 32);
        !           802:
        !           803:     res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
        !           804:
        !           805:     T = ((UINT64)x_lo << 32);
        !           806:     res += T;
        !           807:     if (res < T)
        !           808:         res += 59;
        !           809:
        !           810:     res += data;
        !           811:     if (res < data)
        !           812:         res += 59;
        !           813:
        !           814:     return res;
        !           815: }
        !           816:
        !           817:
        !           818: /* Although UMAC is specified to use a ramped polynomial hash scheme, this
        !           819:  * implementation does not handle all ramp levels. Because we don't handle
        !           820:  * the ramp up to p128 modulus in this implementation, we are limited to
        !           821:  * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
        !           822:  * bytes input to UMAC per tag, ie. 16MB).
        !           823:  */
        !           824: static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
        !           825: {
        !           826:     int i;
        !           827:     UINT64 *data=(UINT64*)data_in;
        !           828:
        !           829:     for (i = 0; i < STREAMS; i++) {
        !           830:         if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
        !           831:             hc->poly_accum[i] = poly64(hc->poly_accum[i],
        !           832:                                        hc->poly_key_8[i], p64 - 1);
        !           833:             hc->poly_accum[i] = poly64(hc->poly_accum[i],
        !           834:                                        hc->poly_key_8[i], (data[i] - 59));
        !           835:         } else {
        !           836:             hc->poly_accum[i] = poly64(hc->poly_accum[i],
        !           837:                                        hc->poly_key_8[i], data[i]);
        !           838:         }
        !           839:     }
        !           840: }
        !           841:
        !           842:
        !           843: /* ---------------------------------------------------------------------- */
        !           844:
        !           845:
        !           846: /* The final step in UHASH is an inner-product hash. The poly hash
        !           847:  * produces a result not neccesarily WORD_LEN bytes long. The inner-
        !           848:  * product hash breaks the polyhash output into 16-bit chunks and
        !           849:  * multiplies each with a 36 bit key.
        !           850:  */
        !           851:
        !           852: static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
        !           853: {
        !           854:     t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);
        !           855:     t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
        !           856:     t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
        !           857:     t = t + ipkp[3] * (UINT64)(UINT16)(data);
        !           858:
        !           859:     return t;
        !           860: }
        !           861:
        !           862: static UINT32 ip_reduce_p36(UINT64 t)
        !           863: {
        !           864: /* Divisionless modular reduction */
        !           865:     UINT64 ret;
        !           866:
        !           867:     ret = (t & m36) + 5 * (t >> 36);
        !           868:     if (ret >= p36)
        !           869:         ret -= p36;
        !           870:
        !           871:     /* return least significant 32 bits */
        !           872:     return (UINT32)(ret);
        !           873: }
        !           874:
        !           875:
        !           876: /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
        !           877:  * the polyhash stage is skipped and ip_short is applied directly to the
        !           878:  * NH output.
        !           879:  */
        !           880: static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
        !           881: {
        !           882:     UINT64 t;
        !           883:     UINT64 *nhp = (UINT64 *)nh_res;
        !           884:
        !           885:     t  = ip_aux(0,ahc->ip_keys, nhp[0]);
        !           886:     STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
        !           887: #if (UMAC_OUTPUT_LEN >= 8)
        !           888:     t  = ip_aux(0,ahc->ip_keys+4, nhp[1]);
        !           889:     STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]);
        !           890: #endif
        !           891: #if (UMAC_OUTPUT_LEN >= 12)
        !           892:     t  = ip_aux(0,ahc->ip_keys+8, nhp[2]);
        !           893:     STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]);
        !           894: #endif
        !           895: #if (UMAC_OUTPUT_LEN == 16)
        !           896:     t  = ip_aux(0,ahc->ip_keys+12, nhp[3]);
        !           897:     STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]);
        !           898: #endif
        !           899: }
        !           900:
        !           901: /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
        !           902:  * the polyhash stage is not skipped and ip_long is applied to the
        !           903:  * polyhash output.
        !           904:  */
        !           905: static void ip_long(uhash_ctx_t ahc, u_char *res)
        !           906: {
        !           907:     int i;
        !           908:     UINT64 t;
        !           909:
        !           910:     for (i = 0; i < STREAMS; i++) {
        !           911:         /* fix polyhash output not in Z_p64 */
        !           912:         if (ahc->poly_accum[i] >= p64)
        !           913:             ahc->poly_accum[i] -= p64;
        !           914:         t  = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
        !           915:         STORE_UINT32_BIG((UINT32 *)res+i,
        !           916:                          ip_reduce_p36(t) ^ ahc->ip_trans[i]);
        !           917:     }
        !           918: }
        !           919:
        !           920:
        !           921: /* ---------------------------------------------------------------------- */
        !           922:
        !           923: /* ---------------------------------------------------------------------- */
        !           924:
        !           925: /* Reset uhash context for next hash session */
        !           926: static int uhash_reset(uhash_ctx_t pc)
        !           927: {
        !           928:     nh_reset(&pc->hash);
        !           929:     pc->msg_len = 0;
        !           930:     pc->poly_accum[0] = 1;
        !           931: #if (UMAC_OUTPUT_LEN >= 8)
        !           932:     pc->poly_accum[1] = 1;
        !           933: #endif
        !           934: #if (UMAC_OUTPUT_LEN >= 12)
        !           935:     pc->poly_accum[2] = 1;
        !           936: #endif
        !           937: #if (UMAC_OUTPUT_LEN == 16)
        !           938:     pc->poly_accum[3] = 1;
        !           939: #endif
        !           940:     return 1;
        !           941: }
        !           942:
        !           943: /* ---------------------------------------------------------------------- */
        !           944:
        !           945: /* Given a pointer to the internal key needed by kdf() and a uhash context,
        !           946:  * initialize the NH context and generate keys needed for poly and inner-
        !           947:  * product hashing. All keys are endian adjusted in memory so that native
        !           948:  * loads cause correct keys to be in registers during calculation.
        !           949:  */
        !           950: static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
        !           951: {
        !           952:     int i;
        !           953:     UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
        !           954:
        !           955:     /* Zero the entire uhash context */
        !           956:     memset(ahc, 0, sizeof(uhash_ctx));
        !           957:
        !           958:     /* Initialize the L1 hash */
        !           959:     nh_init(&ahc->hash, prf_key);
        !           960:
        !           961:     /* Setup L2 hash variables */
        !           962:     kdf(buf, prf_key, 2, sizeof(buf));    /* Fill buffer with index 1 key */
        !           963:     for (i = 0; i < STREAMS; i++) {
        !           964:         /* Fill keys from the buffer, skipping bytes in the buffer not
        !           965:          * used by this implementation. Endian reverse the keys if on a
        !           966:          * little-endian computer.
        !           967:          */
        !           968:         memcpy(ahc->poly_key_8+i, buf+24*i, 8);
        !           969:         endian_convert_if_le(ahc->poly_key_8+i, 8, 8);
        !           970:         /* Mask the 64-bit keys to their special domain */
        !           971:         ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
        !           972:         ahc->poly_accum[i] = 1;  /* Our polyhash prepends a non-zero word */
        !           973:     }
        !           974:
        !           975:     /* Setup L3-1 hash variables */
        !           976:     kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
        !           977:     for (i = 0; i < STREAMS; i++)
        !           978:           memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
        !           979:                                                  4*sizeof(UINT64));
        !           980:     endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),
        !           981:                                                   sizeof(ahc->ip_keys));
        !           982:     for (i = 0; i < STREAMS*4; i++)
        !           983:         ahc->ip_keys[i] %= p36;  /* Bring into Z_p36 */
        !           984:
        !           985:     /* Setup L3-2 hash variables    */
        !           986:     /* Fill buffer with index 4 key */
        !           987:     kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
        !           988:     endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),
        !           989:                          STREAMS * sizeof(UINT32));
        !           990: }
        !           991:
        !           992: /* ---------------------------------------------------------------------- */
        !           993:
        !           994: #if 0
        !           995: static uhash_ctx_t uhash_alloc(u_char key[])
        !           996: {
        !           997: /* Allocate memory and force to a 16-byte boundary. */
        !           998:     uhash_ctx_t ctx;
        !           999:     u_char bytes_to_add;
        !          1000:     aes_int_key prf_key;
        !          1001:
        !          1002:     ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
        !          1003:     if (ctx) {
        !          1004:         if (ALLOC_BOUNDARY) {
        !          1005:             bytes_to_add = ALLOC_BOUNDARY -
        !          1006:                               ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1));
        !          1007:             ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add);
        !          1008:             *((u_char *)ctx - 1) = bytes_to_add;
        !          1009:         }
        !          1010:         aes_key_setup(key,prf_key);
        !          1011:         uhash_init(ctx, prf_key);
        !          1012:     }
        !          1013:     return (ctx);
        !          1014: }
        !          1015: #endif
        !          1016:
        !          1017: /* ---------------------------------------------------------------------- */
        !          1018:
        !          1019: #if 0
        !          1020: static int uhash_free(uhash_ctx_t ctx)
        !          1021: {
        !          1022: /* Free memory allocated by uhash_alloc */
        !          1023:     u_char bytes_to_sub;
        !          1024:
        !          1025:     if (ctx) {
        !          1026:         if (ALLOC_BOUNDARY) {
        !          1027:             bytes_to_sub = *((u_char *)ctx - 1);
        !          1028:             ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub);
        !          1029:         }
        !          1030:         free(ctx);
        !          1031:     }
        !          1032:     return (1);
        !          1033: }
        !          1034: #endif
        !          1035: /* ---------------------------------------------------------------------- */
        !          1036:
        !          1037: static int uhash_update(uhash_ctx_t ctx, u_char *input, long len)
        !          1038: /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
        !          1039:  * hash each one with NH, calling the polyhash on each NH output.
        !          1040:  */
        !          1041: {
        !          1042:     UWORD bytes_hashed, bytes_remaining;
        !          1043:     UINT8 nh_result[STREAMS*sizeof(UINT64)];
        !          1044:
        !          1045:     if (ctx->msg_len + len <= L1_KEY_LEN) {
        !          1046:         nh_update(&ctx->hash, (UINT8 *)input, len);
        !          1047:         ctx->msg_len += len;
        !          1048:     } else {
        !          1049:
        !          1050:          bytes_hashed = ctx->msg_len % L1_KEY_LEN;
        !          1051:          if (ctx->msg_len == L1_KEY_LEN)
        !          1052:              bytes_hashed = L1_KEY_LEN;
        !          1053:
        !          1054:          if (bytes_hashed + len >= L1_KEY_LEN) {
        !          1055:
        !          1056:              /* If some bytes have been passed to the hash function      */
        !          1057:              /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
        !          1058:              /* bytes to complete the current nh_block.                  */
        !          1059:              if (bytes_hashed) {
        !          1060:                  bytes_remaining = (L1_KEY_LEN - bytes_hashed);
        !          1061:                  nh_update(&ctx->hash, (UINT8 *)input, bytes_remaining);
        !          1062:                  nh_final(&ctx->hash, nh_result);
        !          1063:                  ctx->msg_len += bytes_remaining;
        !          1064:                  poly_hash(ctx,(UINT32 *)nh_result);
        !          1065:                  len -= bytes_remaining;
        !          1066:                  input += bytes_remaining;
        !          1067:              }
        !          1068:
        !          1069:              /* Hash directly from input stream if enough bytes */
        !          1070:              while (len >= L1_KEY_LEN) {
        !          1071:                  nh(&ctx->hash, (UINT8 *)input, L1_KEY_LEN,
        !          1072:                                    L1_KEY_LEN, nh_result);
        !          1073:                  ctx->msg_len += L1_KEY_LEN;
        !          1074:                  len -= L1_KEY_LEN;
        !          1075:                  input += L1_KEY_LEN;
        !          1076:                  poly_hash(ctx,(UINT32 *)nh_result);
        !          1077:              }
        !          1078:          }
        !          1079:
        !          1080:          /* pass remaining < L1_KEY_LEN bytes of input data to NH */
        !          1081:          if (len) {
        !          1082:              nh_update(&ctx->hash, (UINT8 *)input, len);
        !          1083:              ctx->msg_len += len;
        !          1084:          }
        !          1085:      }
        !          1086:
        !          1087:     return (1);
        !          1088: }
        !          1089:
        !          1090: /* ---------------------------------------------------------------------- */
        !          1091:
        !          1092: static int uhash_final(uhash_ctx_t ctx, u_char *res)
        !          1093: /* Incorporate any pending data, pad, and generate tag */
        !          1094: {
        !          1095:     UINT8 nh_result[STREAMS*sizeof(UINT64)];
        !          1096:
        !          1097:     if (ctx->msg_len > L1_KEY_LEN) {
        !          1098:         if (ctx->msg_len % L1_KEY_LEN) {
        !          1099:             nh_final(&ctx->hash, nh_result);
        !          1100:             poly_hash(ctx,(UINT32 *)nh_result);
        !          1101:         }
        !          1102:         ip_long(ctx, res);
        !          1103:     } else {
        !          1104:         nh_final(&ctx->hash, nh_result);
        !          1105:         ip_short(ctx,nh_result, res);
        !          1106:     }
        !          1107:     uhash_reset(ctx);
        !          1108:     return (1);
        !          1109: }
        !          1110:
        !          1111: /* ---------------------------------------------------------------------- */
        !          1112:
        !          1113: #if 0
        !          1114: static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
        !          1115: /* assumes that msg is in a writable buffer of length divisible by */
        !          1116: /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed.           */
        !          1117: {
        !          1118:     UINT8 nh_result[STREAMS*sizeof(UINT64)];
        !          1119:     UINT32 nh_len;
        !          1120:     int extra_zeroes_needed;
        !          1121:
        !          1122:     /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
        !          1123:      * the polyhash.
        !          1124:      */
        !          1125:     if (len <= L1_KEY_LEN) {
        !          1126:        if (len == 0)                  /* If zero length messages will not */
        !          1127:                nh_len = L1_PAD_BOUNDARY;  /* be seen, comment out this case   */
        !          1128:        else
        !          1129:                nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
        !          1130:         extra_zeroes_needed = nh_len - len;
        !          1131:         zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
        !          1132:         nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
        !          1133:         ip_short(ahc,nh_result, res);
        !          1134:     } else {
        !          1135:         /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
        !          1136:          * output to poly_hash().
        !          1137:          */
        !          1138:         do {
        !          1139:             nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result);
        !          1140:             poly_hash(ahc,(UINT32 *)nh_result);
        !          1141:             len -= L1_KEY_LEN;
        !          1142:             msg += L1_KEY_LEN;
        !          1143:         } while (len >= L1_KEY_LEN);
        !          1144:         if (len) {
        !          1145:             nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
        !          1146:             extra_zeroes_needed = nh_len - len;
        !          1147:             zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
        !          1148:             nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
        !          1149:             poly_hash(ahc,(UINT32 *)nh_result);
        !          1150:         }
        !          1151:
        !          1152:         ip_long(ahc, res);
        !          1153:     }
        !          1154:
        !          1155:     uhash_reset(ahc);
        !          1156:     return 1;
        !          1157: }
        !          1158: #endif
        !          1159:
        !          1160: /* ---------------------------------------------------------------------- */
        !          1161: /* ---------------------------------------------------------------------- */
        !          1162: /* ----- Begin UMAC Section --------------------------------------------- */
        !          1163: /* ---------------------------------------------------------------------- */
        !          1164: /* ---------------------------------------------------------------------- */
        !          1165:
        !          1166: /* The UMAC interface has two interfaces, an all-at-once interface where
        !          1167:  * the entire message to be authenticated is passed to UMAC in one buffer,
        !          1168:  * and a sequential interface where the message is presented a little at a
        !          1169:  * time. The all-at-once is more optimaized than the sequential version and
        !          1170:  * should be preferred when the sequential interface is not required.
        !          1171:  */
        !          1172: struct umac_ctx {
        !          1173:     uhash_ctx hash;          /* Hash function for message compression    */
        !          1174:     pdf_ctx pdf;             /* PDF for hashed output                    */
        !          1175:     void *free_ptr;          /* Address to free this struct via          */
        !          1176: } umac_ctx;
        !          1177:
        !          1178: /* ---------------------------------------------------------------------- */
        !          1179:
        !          1180: #if 0
        !          1181: int umac_reset(struct umac_ctx *ctx)
        !          1182: /* Reset the hash function to begin a new authentication.        */
        !          1183: {
        !          1184:     uhash_reset(&ctx->hash);
        !          1185:     return (1);
        !          1186: }
        !          1187: #endif
        !          1188:
        !          1189: /* ---------------------------------------------------------------------- */
        !          1190:
        !          1191: int umac_delete(struct umac_ctx *ctx)
        !          1192: /* Deallocate the ctx structure */
        !          1193: {
        !          1194:     if (ctx) {
        !          1195:         if (ALLOC_BOUNDARY)
        !          1196:             ctx = (struct umac_ctx *)ctx->free_ptr;
        !          1197:         free(ctx);
        !          1198:     }
        !          1199:     return (1);
        !          1200: }
        !          1201:
        !          1202: /* ---------------------------------------------------------------------- */
        !          1203:
        !          1204: struct umac_ctx *umac_new(u_char key[])
        !          1205: /* Dynamically allocate a umac_ctx struct, initialize variables,
        !          1206:  * generate subkeys from key. Align to 16-byte boundary.
        !          1207:  */
        !          1208: {
        !          1209:     struct umac_ctx *ctx, *octx;
        !          1210:     size_t bytes_to_add;
        !          1211:     aes_int_key prf_key;
        !          1212:
        !          1213:     octx = ctx = malloc(sizeof(*ctx) + ALLOC_BOUNDARY);
        !          1214:     if (ctx) {
        !          1215:         if (ALLOC_BOUNDARY) {
        !          1216:             bytes_to_add = ALLOC_BOUNDARY -
        !          1217:                               ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1));
        !          1218:             ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add);
        !          1219:         }
        !          1220:         ctx->free_ptr = octx;
        !          1221:         aes_key_setup(key,prf_key);
        !          1222:         pdf_init(&ctx->pdf, prf_key);
        !          1223:         uhash_init(&ctx->hash, prf_key);
        !          1224:     }
        !          1225:
        !          1226:     return (ctx);
        !          1227: }
        !          1228:
        !          1229: /* ---------------------------------------------------------------------- */
        !          1230:
        !          1231: int umac_final(struct umac_ctx *ctx, u_char tag[], u_char nonce[8])
        !          1232: /* Incorporate any pending data, pad, and generate tag */
        !          1233: {
        !          1234:     uhash_final(&ctx->hash, (u_char *)tag);
        !          1235:     pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
        !          1236:
        !          1237:     return (1);
        !          1238: }
        !          1239:
        !          1240: /* ---------------------------------------------------------------------- */
        !          1241:
        !          1242: int umac_update(struct umac_ctx *ctx, u_char *input, long len)
        !          1243: /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and   */
        !          1244: /* hash each one, calling the PDF on the hashed output whenever the hash- */
        !          1245: /* output buffer is full.                                                 */
        !          1246: {
        !          1247:     uhash_update(&ctx->hash, input, len);
        !          1248:     return (1);
        !          1249: }
        !          1250:
        !          1251: /* ---------------------------------------------------------------------- */
        !          1252:
        !          1253: #if 0
        !          1254: int umac(struct umac_ctx *ctx, u_char *input,
        !          1255:          long len, u_char tag[],
        !          1256:          u_char nonce[8])
        !          1257: /* All-in-one version simply calls umac_update() and umac_final().        */
        !          1258: {
        !          1259:     uhash(&ctx->hash, input, len, (u_char *)tag);
        !          1260:     pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
        !          1261:
        !          1262:     return (1);
        !          1263: }
        !          1264: #endif
        !          1265:
        !          1266: /* ---------------------------------------------------------------------- */
        !          1267: /* ---------------------------------------------------------------------- */
        !          1268: /* ----- End UMAC Section ----------------------------------------------- */
        !          1269: /* ---------------------------------------------------------------------- */
        !          1270: /* ---------------------------------------------------------------------- */