[BACK]Return to umac.c CVS log [TXT][DIR] Up to [local] / src / usr.bin / ssh

Annotation of src/usr.bin/ssh/umac.c, Revision 1.11

1.11    ! guenther    1: /* $OpenBSD: umac.c,v 1.10 2014/04/30 19:07:48 naddy Exp $ */
1.1       pvalchev    2: /* -----------------------------------------------------------------------
                      3:  *
                      4:  * umac.c -- C Implementation UMAC Message Authentication
                      5:  *
                      6:  * Version 0.93b of rfc4418.txt -- 2006 July 18
                      7:  *
                      8:  * For a full description of UMAC message authentication see the UMAC
                      9:  * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
                     10:  * Please report bugs and suggestions to the UMAC webpage.
                     11:  *
                     12:  * Copyright (c) 1999-2006 Ted Krovetz
                     13:  *
                     14:  * Permission to use, copy, modify, and distribute this software and
                     15:  * its documentation for any purpose and with or without fee, is hereby
                     16:  * granted provided that the above copyright notice appears in all copies
                     17:  * and in supporting documentation, and that the name of the copyright
                     18:  * holder not be used in advertising or publicity pertaining to
                     19:  * distribution of the software without specific, written prior permission.
                     20:  *
                     21:  * Comments should be directed to Ted Krovetz (tdk@acm.org)
                     22:  *
                     23:  * ---------------------------------------------------------------------- */
                     24:
                     25:  /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
                     26:   *
                     27:   * 1) This version does not work properly on messages larger than 16MB
                     28:   *
                     29:   * 2) If you set the switch to use SSE2, then all data must be 16-byte
                     30:   *    aligned
                     31:   *
                     32:   * 3) When calling the function umac(), it is assumed that msg is in
                     33:   * a writable buffer of length divisible by 32 bytes. The message itself
                     34:   * does not have to fill the entire buffer, but bytes beyond msg may be
                     35:   * zeroed.
                     36:   *
                     37:   * 4) Three free AES implementations are supported by this implementation of
                     38:   * UMAC. Paulo Barreto's version is in the public domain and can be found
                     39:   * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
                     40:   * "Barreto"). The only two files needed are rijndael-alg-fst.c and
                     41:   * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
                     42:   * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It
                     43:   * includes a fast IA-32 assembly version. The OpenSSL crypo library is
                     44:   * the third.
                     45:   *
                     46:   * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
                     47:   * produced under gcc with optimizations set -O3 or higher. Dunno why.
                     48:   *
                     49:   /////////////////////////////////////////////////////////////////////// */
                     50:
                     51: /* ---------------------------------------------------------------------- */
                     52: /* --- User Switches ---------------------------------------------------- */
                     53: /* ---------------------------------------------------------------------- */
                     54:
                     55: #define UMAC_OUTPUT_LEN     8  /* Alowable: 4, 8, 12, 16                  */
                     56: /* #define FORCE_C_ONLY        1  ANSI C and 64-bit integers req'd        */
                     57: /* #define AES_IMPLEMENTAION   1  1 = OpenSSL, 2 = Barreto, 3 = Gladman   */
                     58: /* #define SSE2                0  Is SSE2 is available?                   */
                     59: /* #define RUN_TESTS           0  Run basic correctness/speed tests       */
                     60: /* #define UMAC_AE_SUPPORT     0  Enable auhthenticated encrytion         */
                     61:
                     62: /* ---------------------------------------------------------------------- */
                     63: /* -- Global Includes --------------------------------------------------- */
                     64: /* ---------------------------------------------------------------------- */
                     65:
                     66: #include <sys/types.h>
1.11    ! guenther   67: #include <endian.h>
1.9       djm        68: #include <string.h>
                     69: #include <stdio.h>
                     70: #include <stdlib.h>
                     71: #include <stddef.h>
1.1       pvalchev   72:
1.2       stevesk    73: #include "xmalloc.h"
1.1       pvalchev   74: #include "umac.h"
1.9       djm        75: #include "misc.h"
1.1       pvalchev   76:
                     77: /* ---------------------------------------------------------------------- */
                     78: /* --- Primitive Data Types ---                                           */
                     79: /* ---------------------------------------------------------------------- */
                     80:
                     81: /* The following assumptions may need change on your system */
                     82: typedef u_int8_t       UINT8;  /* 1 byte   */
                     83: typedef u_int16_t      UINT16; /* 2 byte   */
                     84: typedef u_int32_t      UINT32; /* 4 byte   */
                     85: typedef u_int64_t      UINT64; /* 8 bytes  */
                     86: typedef unsigned int   UWORD;  /* Register */
                     87:
                     88: /* ---------------------------------------------------------------------- */
                     89: /* --- Constants -------------------------------------------------------- */
                     90: /* ---------------------------------------------------------------------- */
                     91:
                     92: #define UMAC_KEY_LEN           16  /* UMAC takes 16 bytes of external key */
                     93:
                     94: /* Message "words" are read from memory in an endian-specific manner.     */
                     95: /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must    */
                     96: /* be set true if the host computer is little-endian.                     */
                     97:
                     98: #if BYTE_ORDER == LITTLE_ENDIAN
                     99: #define __LITTLE_ENDIAN__ 1
                    100: #else
                    101: #define __LITTLE_ENDIAN__ 0
                    102: #endif
                    103:
                    104: /* ---------------------------------------------------------------------- */
                    105: /* ---------------------------------------------------------------------- */
                    106: /* ----- Architecture Specific ------------------------------------------ */
                    107: /* ---------------------------------------------------------------------- */
                    108: /* ---------------------------------------------------------------------- */
                    109:
                    110:
                    111: /* ---------------------------------------------------------------------- */
                    112: /* ---------------------------------------------------------------------- */
                    113: /* ----- Primitive Routines --------------------------------------------- */
                    114: /* ---------------------------------------------------------------------- */
                    115: /* ---------------------------------------------------------------------- */
                    116:
                    117:
                    118: /* ---------------------------------------------------------------------- */
                    119: /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
                    120: /* ---------------------------------------------------------------------- */
                    121:
                    122: #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
                    123:
                    124: /* ---------------------------------------------------------------------- */
                    125: /* --- Endian Conversion --- Forcing assembly on some platforms           */
                    126: /* ---------------------------------------------------------------------- */
                    127:
                    128: /* The following definitions use the above reversal-primitives to do the right
                    129:  * thing on endian specific load and stores.
                    130:  */
                    131:
1.9       djm       132: #if BYTE_ORDER == LITTLE_ENDIAN
                    133: #define LOAD_UINT32_REVERSED(p)                get_u32(p)
                    134: #define STORE_UINT32_REVERSED(p,v)     put_u32(p,v)
1.1       pvalchev  135: #else
1.9       djm       136: #define LOAD_UINT32_REVERSED(p)                get_u32_le(p)
                    137: #define STORE_UINT32_REVERSED(p,v)     put_u32_le(p,v)
1.1       pvalchev  138: #endif
1.9       djm       139:
                    140: #define LOAD_UINT32_LITTLE(p)           (get_u32_le(p))
                    141: #define STORE_UINT32_BIG(p,v)           put_u32(p, v)
1.1       pvalchev  142:
                    143:
                    144:
                    145: /* ---------------------------------------------------------------------- */
                    146: /* ---------------------------------------------------------------------- */
                    147: /* ----- Begin KDF & PDF Section ---------------------------------------- */
                    148: /* ---------------------------------------------------------------------- */
                    149: /* ---------------------------------------------------------------------- */
                    150:
                    151: /* UMAC uses AES with 16 byte block and key lengths */
                    152: #define AES_BLOCK_LEN  16
                    153:
1.10      naddy     154: #ifdef WITH_OPENSSL
1.1       pvalchev  155: #include <openssl/aes.h>
                    156: typedef AES_KEY aes_int_key[1];
                    157: #define aes_encryption(in,out,int_key)                  \
                    158:   AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
                    159: #define aes_key_setup(key,int_key)                      \
1.7       djm       160:   AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN*8,int_key)
1.10      naddy     161: #else
                    162: #include "rijndael.h"
                    163: #define AES_ROUNDS ((UMAC_KEY_LEN / 4) + 6)
                    164: typedef UINT8 aes_int_key[AES_ROUNDS+1][4][4]; /* AES internal */
                    165: #define aes_encryption(in,out,int_key) \
                    166:   rijndaelEncrypt((u32 *)(int_key), AES_ROUNDS, (u8 *)(in), (u8 *)(out))
                    167: #define aes_key_setup(key,int_key) \
                    168:   rijndaelKeySetupEnc((u32 *)(int_key), (const unsigned char *)(key), \
                    169:   UMAC_KEY_LEN*8)
                    170: #endif
1.1       pvalchev  171:
                    172: /* The user-supplied UMAC key is stretched using AES in a counter
                    173:  * mode to supply all random bits needed by UMAC. The kdf function takes
                    174:  * an AES internal key representation 'key' and writes a stream of
                    175:  * 'nbytes' bytes to the memory pointed at by 'buffer_ptr'. Each distinct
                    176:  * 'ndx' causes a distinct byte stream.
                    177:  */
                    178: static void kdf(void *buffer_ptr, aes_int_key key, UINT8 ndx, int nbytes)
                    179: {
                    180:     UINT8 in_buf[AES_BLOCK_LEN] = {0};
                    181:     UINT8 out_buf[AES_BLOCK_LEN];
                    182:     UINT8 *dst_buf = (UINT8 *)buffer_ptr;
                    183:     int i;
                    184:
                    185:     /* Setup the initial value */
                    186:     in_buf[AES_BLOCK_LEN-9] = ndx;
                    187:     in_buf[AES_BLOCK_LEN-1] = i = 1;
                    188:
                    189:     while (nbytes >= AES_BLOCK_LEN) {
                    190:         aes_encryption(in_buf, out_buf, key);
                    191:         memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
                    192:         in_buf[AES_BLOCK_LEN-1] = ++i;
                    193:         nbytes -= AES_BLOCK_LEN;
                    194:         dst_buf += AES_BLOCK_LEN;
                    195:     }
                    196:     if (nbytes) {
                    197:         aes_encryption(in_buf, out_buf, key);
                    198:         memcpy(dst_buf,out_buf,nbytes);
                    199:     }
                    200: }
                    201:
                    202: /* The final UHASH result is XOR'd with the output of a pseudorandom
                    203:  * function. Here, we use AES to generate random output and
                    204:  * xor the appropriate bytes depending on the last bits of nonce.
                    205:  * This scheme is optimized for sequential, increasing big-endian nonces.
                    206:  */
                    207:
                    208: typedef struct {
                    209:     UINT8 cache[AES_BLOCK_LEN];  /* Previous AES output is saved      */
                    210:     UINT8 nonce[AES_BLOCK_LEN];  /* The AES input making above cache  */
                    211:     aes_int_key prf_key;         /* Expanded AES key for PDF          */
                    212: } pdf_ctx;
                    213:
                    214: static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
                    215: {
                    216:     UINT8 buf[UMAC_KEY_LEN];
                    217:
                    218:     kdf(buf, prf_key, 0, UMAC_KEY_LEN);
                    219:     aes_key_setup(buf, pc->prf_key);
                    220:
                    221:     /* Initialize pdf and cache */
                    222:     memset(pc->nonce, 0, sizeof(pc->nonce));
                    223:     aes_encryption(pc->nonce, pc->cache, pc->prf_key);
                    224: }
                    225:
1.7       djm       226: static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], UINT8 buf[8])
1.1       pvalchev  227: {
                    228:     /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
                    229:      * of the AES output. If last time around we returned the ndx-1st
                    230:      * element, then we may have the result in the cache already.
                    231:      */
                    232:
                    233: #if (UMAC_OUTPUT_LEN == 4)
                    234: #define LOW_BIT_MASK 3
                    235: #elif (UMAC_OUTPUT_LEN == 8)
                    236: #define LOW_BIT_MASK 1
                    237: #elif (UMAC_OUTPUT_LEN > 8)
                    238: #define LOW_BIT_MASK 0
                    239: #endif
1.6       djm       240:     union {
                    241:         UINT8 tmp_nonce_lo[4];
                    242:         UINT32 align;
                    243:     } t;
1.1       pvalchev  244: #if LOW_BIT_MASK != 0
                    245:     int ndx = nonce[7] & LOW_BIT_MASK;
                    246: #endif
1.7       djm       247:     *(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1];
1.6       djm       248:     t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
1.1       pvalchev  249:
1.6       djm       250:     if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) ||
1.7       djm       251:          (((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) )
1.1       pvalchev  252:     {
1.7       djm       253:         ((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0];
1.6       djm       254:         ((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0];
1.1       pvalchev  255:         aes_encryption(pc->nonce, pc->cache, pc->prf_key);
                    256:     }
                    257:
                    258: #if (UMAC_OUTPUT_LEN == 4)
                    259:     *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx];
                    260: #elif (UMAC_OUTPUT_LEN == 8)
                    261:     *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx];
                    262: #elif (UMAC_OUTPUT_LEN == 12)
                    263:     ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
                    264:     ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2];
                    265: #elif (UMAC_OUTPUT_LEN == 16)
                    266:     ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
                    267:     ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1];
                    268: #endif
                    269: }
                    270:
                    271: /* ---------------------------------------------------------------------- */
                    272: /* ---------------------------------------------------------------------- */
                    273: /* ----- Begin NH Hash Section ------------------------------------------ */
                    274: /* ---------------------------------------------------------------------- */
                    275: /* ---------------------------------------------------------------------- */
                    276:
                    277: /* The NH-based hash functions used in UMAC are described in the UMAC paper
                    278:  * and specification, both of which can be found at the UMAC website.
                    279:  * The interface to this implementation has two
                    280:  * versions, one expects the entire message being hashed to be passed
                    281:  * in a single buffer and returns the hash result immediately. The second
                    282:  * allows the message to be passed in a sequence of buffers. In the
                    283:  * muliple-buffer interface, the client calls the routine nh_update() as
                    284:  * many times as necessary. When there is no more data to be fed to the
                    285:  * hash, the client calls nh_final() which calculates the hash output.
                    286:  * Before beginning another hash calculation the nh_reset() routine
                    287:  * must be called. The single-buffer routine, nh(), is equivalent to
                    288:  * the sequence of calls nh_update() and nh_final(); however it is
                    289:  * optimized and should be prefered whenever the multiple-buffer interface
                    290:  * is not necessary. When using either interface, it is the client's
                    291:  * responsability to pass no more than L1_KEY_LEN bytes per hash result.
                    292:  *
                    293:  * The routine nh_init() initializes the nh_ctx data structure and
                    294:  * must be called once, before any other PDF routine.
                    295:  */
                    296:
                    297:  /* The "nh_aux" routines do the actual NH hashing work. They
                    298:   * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
                    299:   * produce output for all STREAMS NH iterations in one call,
                    300:   * allowing the parallel implementation of the streams.
                    301:   */
                    302:
                    303: #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied  */
                    304: #define L1_KEY_LEN         1024     /* Internal key bytes                 */
                    305: #define L1_KEY_SHIFT         16     /* Toeplitz key shift between streams */
                    306: #define L1_PAD_BOUNDARY      32     /* pad message to boundary multiple   */
                    307: #define ALLOC_BOUNDARY       16     /* Keep buffers aligned to this       */
                    308: #define HASH_BUF_BYTES       64     /* nh_aux_hb buffer multiple          */
                    309:
                    310: typedef struct {
                    311:     UINT8  nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */
1.4       djm       312:     UINT8  data   [HASH_BUF_BYTES];    /* Incoming data buffer           */
1.1       pvalchev  313:     int next_data_empty;    /* Bookeeping variable for data buffer.       */
                    314:     int bytes_hashed;        /* Bytes (out of L1_KEY_LEN) incorperated.   */
                    315:     UINT64 state[STREAMS];               /* on-line state     */
                    316: } nh_ctx;
                    317:
                    318:
                    319: #if (UMAC_OUTPUT_LEN == 4)
                    320:
1.7       djm       321: static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
1.1       pvalchev  322: /* NH hashing primitive. Previous (partial) hash result is loaded and
                    323: * then stored via hp pointer. The length of the data pointed at by "dp",
                    324: * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32).  Key
                    325: * is expected to be endian compensated in memory at key setup.
                    326: */
                    327: {
                    328:     UINT64 h;
                    329:     UWORD c = dlen / 32;
                    330:     UINT32 *k = (UINT32 *)kp;
1.7       djm       331:     const UINT32 *d = (const UINT32 *)dp;
1.1       pvalchev  332:     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
                    333:     UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
                    334:
                    335:     h = *((UINT64 *)hp);
                    336:     do {
                    337:         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
                    338:         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
                    339:         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
                    340:         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
                    341:         k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
                    342:         k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
                    343:         h += MUL64((k0 + d0), (k4 + d4));
                    344:         h += MUL64((k1 + d1), (k5 + d5));
                    345:         h += MUL64((k2 + d2), (k6 + d6));
                    346:         h += MUL64((k3 + d3), (k7 + d7));
                    347:
                    348:         d += 8;
                    349:         k += 8;
                    350:     } while (--c);
                    351:   *((UINT64 *)hp) = h;
                    352: }
                    353:
                    354: #elif (UMAC_OUTPUT_LEN == 8)
                    355:
1.7       djm       356: static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
1.1       pvalchev  357: /* Same as previous nh_aux, but two streams are handled in one pass,
                    358:  * reading and writing 16 bytes of hash-state per call.
                    359:  */
                    360: {
                    361:   UINT64 h1,h2;
                    362:   UWORD c = dlen / 32;
                    363:   UINT32 *k = (UINT32 *)kp;
1.7       djm       364:   const UINT32 *d = (const UINT32 *)dp;
1.1       pvalchev  365:   UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
                    366:   UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
                    367:         k8,k9,k10,k11;
                    368:
                    369:   h1 = *((UINT64 *)hp);
                    370:   h2 = *((UINT64 *)hp + 1);
                    371:   k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
                    372:   do {
                    373:     d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
                    374:     d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
                    375:     d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
                    376:     d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
                    377:     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
                    378:     k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
                    379:
                    380:     h1 += MUL64((k0 + d0), (k4 + d4));
                    381:     h2 += MUL64((k4 + d0), (k8 + d4));
                    382:
                    383:     h1 += MUL64((k1 + d1), (k5 + d5));
                    384:     h2 += MUL64((k5 + d1), (k9 + d5));
                    385:
                    386:     h1 += MUL64((k2 + d2), (k6 + d6));
                    387:     h2 += MUL64((k6 + d2), (k10 + d6));
                    388:
                    389:     h1 += MUL64((k3 + d3), (k7 + d7));
                    390:     h2 += MUL64((k7 + d3), (k11 + d7));
                    391:
                    392:     k0 = k8; k1 = k9; k2 = k10; k3 = k11;
                    393:
                    394:     d += 8;
                    395:     k += 8;
                    396:   } while (--c);
                    397:   ((UINT64 *)hp)[0] = h1;
                    398:   ((UINT64 *)hp)[1] = h2;
                    399: }
                    400:
                    401: #elif (UMAC_OUTPUT_LEN == 12)
                    402:
1.7       djm       403: static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
1.1       pvalchev  404: /* Same as previous nh_aux, but two streams are handled in one pass,
                    405:  * reading and writing 24 bytes of hash-state per call.
                    406: */
                    407: {
                    408:     UINT64 h1,h2,h3;
                    409:     UWORD c = dlen / 32;
                    410:     UINT32 *k = (UINT32 *)kp;
1.7       djm       411:     const UINT32 *d = (const UINT32 *)dp;
1.1       pvalchev  412:     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
                    413:     UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
                    414:         k8,k9,k10,k11,k12,k13,k14,k15;
                    415:
                    416:     h1 = *((UINT64 *)hp);
                    417:     h2 = *((UINT64 *)hp + 1);
                    418:     h3 = *((UINT64 *)hp + 2);
                    419:     k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
                    420:     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
                    421:     do {
                    422:         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
                    423:         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
                    424:         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
                    425:         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
                    426:         k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
                    427:         k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
                    428:
                    429:         h1 += MUL64((k0 + d0), (k4 + d4));
                    430:         h2 += MUL64((k4 + d0), (k8 + d4));
                    431:         h3 += MUL64((k8 + d0), (k12 + d4));
                    432:
                    433:         h1 += MUL64((k1 + d1), (k5 + d5));
                    434:         h2 += MUL64((k5 + d1), (k9 + d5));
                    435:         h3 += MUL64((k9 + d1), (k13 + d5));
                    436:
                    437:         h1 += MUL64((k2 + d2), (k6 + d6));
                    438:         h2 += MUL64((k6 + d2), (k10 + d6));
                    439:         h3 += MUL64((k10 + d2), (k14 + d6));
                    440:
                    441:         h1 += MUL64((k3 + d3), (k7 + d7));
                    442:         h2 += MUL64((k7 + d3), (k11 + d7));
                    443:         h3 += MUL64((k11 + d3), (k15 + d7));
                    444:
                    445:         k0 = k8; k1 = k9; k2 = k10; k3 = k11;
                    446:         k4 = k12; k5 = k13; k6 = k14; k7 = k15;
                    447:
                    448:         d += 8;
                    449:         k += 8;
                    450:     } while (--c);
                    451:     ((UINT64 *)hp)[0] = h1;
                    452:     ((UINT64 *)hp)[1] = h2;
                    453:     ((UINT64 *)hp)[2] = h3;
                    454: }
                    455:
                    456: #elif (UMAC_OUTPUT_LEN == 16)
                    457:
1.7       djm       458: static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
1.1       pvalchev  459: /* Same as previous nh_aux, but two streams are handled in one pass,
                    460:  * reading and writing 24 bytes of hash-state per call.
                    461: */
                    462: {
                    463:     UINT64 h1,h2,h3,h4;
                    464:     UWORD c = dlen / 32;
                    465:     UINT32 *k = (UINT32 *)kp;
1.7       djm       466:     const UINT32 *d = (const UINT32 *)dp;
1.1       pvalchev  467:     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
                    468:     UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
                    469:         k8,k9,k10,k11,k12,k13,k14,k15,
                    470:         k16,k17,k18,k19;
                    471:
                    472:     h1 = *((UINT64 *)hp);
                    473:     h2 = *((UINT64 *)hp + 1);
                    474:     h3 = *((UINT64 *)hp + 2);
                    475:     h4 = *((UINT64 *)hp + 3);
                    476:     k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
                    477:     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
                    478:     do {
                    479:         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
                    480:         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
                    481:         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
                    482:         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
                    483:         k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
                    484:         k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
                    485:         k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
                    486:
                    487:         h1 += MUL64((k0 + d0), (k4 + d4));
                    488:         h2 += MUL64((k4 + d0), (k8 + d4));
                    489:         h3 += MUL64((k8 + d0), (k12 + d4));
                    490:         h4 += MUL64((k12 + d0), (k16 + d4));
                    491:
                    492:         h1 += MUL64((k1 + d1), (k5 + d5));
                    493:         h2 += MUL64((k5 + d1), (k9 + d5));
                    494:         h3 += MUL64((k9 + d1), (k13 + d5));
                    495:         h4 += MUL64((k13 + d1), (k17 + d5));
                    496:
                    497:         h1 += MUL64((k2 + d2), (k6 + d6));
                    498:         h2 += MUL64((k6 + d2), (k10 + d6));
                    499:         h3 += MUL64((k10 + d2), (k14 + d6));
                    500:         h4 += MUL64((k14 + d2), (k18 + d6));
                    501:
                    502:         h1 += MUL64((k3 + d3), (k7 + d7));
                    503:         h2 += MUL64((k7 + d3), (k11 + d7));
                    504:         h3 += MUL64((k11 + d3), (k15 + d7));
                    505:         h4 += MUL64((k15 + d3), (k19 + d7));
                    506:
                    507:         k0 = k8; k1 = k9; k2 = k10; k3 = k11;
                    508:         k4 = k12; k5 = k13; k6 = k14; k7 = k15;
                    509:         k8 = k16; k9 = k17; k10 = k18; k11 = k19;
                    510:
                    511:         d += 8;
                    512:         k += 8;
                    513:     } while (--c);
                    514:     ((UINT64 *)hp)[0] = h1;
                    515:     ((UINT64 *)hp)[1] = h2;
                    516:     ((UINT64 *)hp)[2] = h3;
                    517:     ((UINT64 *)hp)[3] = h4;
                    518: }
                    519:
                    520: /* ---------------------------------------------------------------------- */
                    521: #endif  /* UMAC_OUTPUT_LENGTH */
                    522: /* ---------------------------------------------------------------------- */
                    523:
                    524:
                    525: /* ---------------------------------------------------------------------- */
                    526:
1.7       djm       527: static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
1.1       pvalchev  528: /* This function is a wrapper for the primitive NH hash functions. It takes
                    529:  * as argument "hc" the current hash context and a buffer which must be a
                    530:  * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
                    531:  * appropriately according to how much message has been hashed already.
                    532:  */
                    533: {
                    534:     UINT8 *key;
                    535:
                    536:     key = hc->nh_key + hc->bytes_hashed;
                    537:     nh_aux(key, buf, hc->state, nbytes);
                    538: }
                    539:
                    540: /* ---------------------------------------------------------------------- */
                    541:
                    542: static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)
                    543: /* We endian convert the keys on little-endian computers to               */
                    544: /* compensate for the lack of big-endian memory reads during hashing.     */
                    545: {
                    546:     UWORD iters = num_bytes / bpw;
                    547:     if (bpw == 4) {
                    548:         UINT32 *p = (UINT32 *)buf;
                    549:         do {
                    550:             *p = LOAD_UINT32_REVERSED(p);
                    551:             p++;
                    552:         } while (--iters);
                    553:     } else if (bpw == 8) {
                    554:         UINT32 *p = (UINT32 *)buf;
                    555:         UINT32 t;
                    556:         do {
                    557:             t = LOAD_UINT32_REVERSED(p+1);
                    558:             p[1] = LOAD_UINT32_REVERSED(p);
                    559:             p[0] = t;
                    560:             p += 2;
                    561:         } while (--iters);
                    562:     }
                    563: }
                    564: #if (__LITTLE_ENDIAN__)
                    565: #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
                    566: #else
                    567: #define endian_convert_if_le(x,y,z) do{}while(0)  /* Do nothing */
                    568: #endif
                    569:
                    570: /* ---------------------------------------------------------------------- */
                    571:
                    572: static void nh_reset(nh_ctx *hc)
                    573: /* Reset nh_ctx to ready for hashing of new data */
                    574: {
                    575:     hc->bytes_hashed = 0;
                    576:     hc->next_data_empty = 0;
                    577:     hc->state[0] = 0;
                    578: #if (UMAC_OUTPUT_LEN >= 8)
                    579:     hc->state[1] = 0;
                    580: #endif
                    581: #if (UMAC_OUTPUT_LEN >= 12)
                    582:     hc->state[2] = 0;
                    583: #endif
                    584: #if (UMAC_OUTPUT_LEN == 16)
                    585:     hc->state[3] = 0;
                    586: #endif
                    587:
                    588: }
                    589:
                    590: /* ---------------------------------------------------------------------- */
                    591:
                    592: static void nh_init(nh_ctx *hc, aes_int_key prf_key)
                    593: /* Generate nh_key, endian convert and reset to be ready for hashing.   */
                    594: {
                    595:     kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));
                    596:     endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key));
                    597:     nh_reset(hc);
                    598: }
                    599:
                    600: /* ---------------------------------------------------------------------- */
                    601:
1.7       djm       602: static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
1.1       pvalchev  603: /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an    */
                    604: /* even multiple of HASH_BUF_BYTES.                                       */
                    605: {
                    606:     UINT32 i,j;
                    607:
                    608:     j = hc->next_data_empty;
                    609:     if ((j + nbytes) >= HASH_BUF_BYTES) {
                    610:         if (j) {
                    611:             i = HASH_BUF_BYTES - j;
                    612:             memcpy(hc->data+j, buf, i);
                    613:             nh_transform(hc,hc->data,HASH_BUF_BYTES);
                    614:             nbytes -= i;
                    615:             buf += i;
                    616:             hc->bytes_hashed += HASH_BUF_BYTES;
                    617:         }
                    618:         if (nbytes >= HASH_BUF_BYTES) {
                    619:             i = nbytes & ~(HASH_BUF_BYTES - 1);
                    620:             nh_transform(hc, buf, i);
                    621:             nbytes -= i;
                    622:             buf += i;
                    623:             hc->bytes_hashed += i;
                    624:         }
                    625:         j = 0;
                    626:     }
                    627:     memcpy(hc->data + j, buf, nbytes);
                    628:     hc->next_data_empty = j + nbytes;
                    629: }
                    630:
                    631: /* ---------------------------------------------------------------------- */
                    632:
                    633: static void zero_pad(UINT8 *p, int nbytes)
                    634: {
                    635: /* Write "nbytes" of zeroes, beginning at "p" */
                    636:     if (nbytes >= (int)sizeof(UWORD)) {
                    637:         while ((ptrdiff_t)p % sizeof(UWORD)) {
                    638:             *p = 0;
                    639:             nbytes--;
                    640:             p++;
                    641:         }
                    642:         while (nbytes >= (int)sizeof(UWORD)) {
                    643:             *(UWORD *)p = 0;
                    644:             nbytes -= sizeof(UWORD);
                    645:             p += sizeof(UWORD);
                    646:         }
                    647:     }
                    648:     while (nbytes) {
                    649:         *p = 0;
                    650:         nbytes--;
                    651:         p++;
                    652:     }
                    653: }
                    654:
                    655: /* ---------------------------------------------------------------------- */
                    656:
                    657: static void nh_final(nh_ctx *hc, UINT8 *result)
                    658: /* After passing some number of data buffers to nh_update() for integration
                    659:  * into an NH context, nh_final is called to produce a hash result. If any
                    660:  * bytes are in the buffer hc->data, incorporate them into the
                    661:  * NH context. Finally, add into the NH accumulation "state" the total number
                    662:  * of bits hashed. The resulting numbers are written to the buffer "result".
                    663:  * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
                    664:  */
                    665: {
                    666:     int nh_len, nbits;
                    667:
                    668:     if (hc->next_data_empty != 0) {
                    669:         nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &
                    670:                                                 ~(L1_PAD_BOUNDARY - 1));
                    671:         zero_pad(hc->data + hc->next_data_empty,
                    672:                                           nh_len - hc->next_data_empty);
                    673:         nh_transform(hc, hc->data, nh_len);
                    674:         hc->bytes_hashed += hc->next_data_empty;
                    675:     } else if (hc->bytes_hashed == 0) {
                    676:        nh_len = L1_PAD_BOUNDARY;
                    677:         zero_pad(hc->data, L1_PAD_BOUNDARY);
                    678:         nh_transform(hc, hc->data, nh_len);
                    679:     }
                    680:
                    681:     nbits = (hc->bytes_hashed << 3);
                    682:     ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;
                    683: #if (UMAC_OUTPUT_LEN >= 8)
                    684:     ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;
                    685: #endif
                    686: #if (UMAC_OUTPUT_LEN >= 12)
                    687:     ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;
                    688: #endif
                    689: #if (UMAC_OUTPUT_LEN == 16)
                    690:     ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;
                    691: #endif
                    692:     nh_reset(hc);
                    693: }
                    694:
                    695: /* ---------------------------------------------------------------------- */
                    696:
1.7       djm       697: static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len,
1.1       pvalchev  698:                UINT32 unpadded_len, UINT8 *result)
                    699: /* All-in-one nh_update() and nh_final() equivalent.
                    700:  * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
                    701:  * well aligned
                    702:  */
                    703: {
                    704:     UINT32 nbits;
                    705:
                    706:     /* Initialize the hash state */
                    707:     nbits = (unpadded_len << 3);
                    708:
                    709:     ((UINT64 *)result)[0] = nbits;
                    710: #if (UMAC_OUTPUT_LEN >= 8)
                    711:     ((UINT64 *)result)[1] = nbits;
                    712: #endif
                    713: #if (UMAC_OUTPUT_LEN >= 12)
                    714:     ((UINT64 *)result)[2] = nbits;
                    715: #endif
                    716: #if (UMAC_OUTPUT_LEN == 16)
                    717:     ((UINT64 *)result)[3] = nbits;
                    718: #endif
                    719:
                    720:     nh_aux(hc->nh_key, buf, result, padded_len);
                    721: }
                    722:
                    723: /* ---------------------------------------------------------------------- */
                    724: /* ---------------------------------------------------------------------- */
                    725: /* ----- Begin UHASH Section -------------------------------------------- */
                    726: /* ---------------------------------------------------------------------- */
                    727: /* ---------------------------------------------------------------------- */
                    728:
                    729: /* UHASH is a multi-layered algorithm. Data presented to UHASH is first
                    730:  * hashed by NH. The NH output is then hashed by a polynomial-hash layer
                    731:  * unless the initial data to be hashed is short. After the polynomial-
                    732:  * layer, an inner-product hash is used to produce the final UHASH output.
                    733:  *
                    734:  * UHASH provides two interfaces, one all-at-once and another where data
                    735:  * buffers are presented sequentially. In the sequential interface, the
                    736:  * UHASH client calls the routine uhash_update() as many times as necessary.
                    737:  * When there is no more data to be fed to UHASH, the client calls
                    738:  * uhash_final() which
                    739:  * calculates the UHASH output. Before beginning another UHASH calculation
                    740:  * the uhash_reset() routine must be called. The all-at-once UHASH routine,
                    741:  * uhash(), is equivalent to the sequence of calls uhash_update() and
                    742:  * uhash_final(); however it is optimized and should be
                    743:  * used whenever the sequential interface is not necessary.
                    744:  *
                    745:  * The routine uhash_init() initializes the uhash_ctx data structure and
                    746:  * must be called once, before any other UHASH routine.
                    747:  */
                    748:
                    749: /* ---------------------------------------------------------------------- */
                    750: /* ----- Constants and uhash_ctx ---------------------------------------- */
                    751: /* ---------------------------------------------------------------------- */
                    752:
                    753: /* ---------------------------------------------------------------------- */
                    754: /* ----- Poly hash and Inner-Product hash Constants --------------------- */
                    755: /* ---------------------------------------------------------------------- */
                    756:
                    757: /* Primes and masks */
                    758: #define p36    ((UINT64)0x0000000FFFFFFFFBull)              /* 2^36 -  5 */
                    759: #define p64    ((UINT64)0xFFFFFFFFFFFFFFC5ull)              /* 2^64 - 59 */
                    760: #define m36    ((UINT64)0x0000000FFFFFFFFFull)  /* The low 36 of 64 bits */
                    761:
                    762:
                    763: /* ---------------------------------------------------------------------- */
                    764:
                    765: typedef struct uhash_ctx {
                    766:     nh_ctx hash;                          /* Hash context for L1 NH hash  */
                    767:     UINT64 poly_key_8[STREAMS];           /* p64 poly keys                */
                    768:     UINT64 poly_accum[STREAMS];           /* poly hash result             */
                    769:     UINT64 ip_keys[STREAMS*4];            /* Inner-product keys           */
                    770:     UINT32 ip_trans[STREAMS];             /* Inner-product translation    */
                    771:     UINT32 msg_len;                       /* Total length of data passed  */
                    772:                                           /* to uhash */
                    773: } uhash_ctx;
                    774: typedef struct uhash_ctx *uhash_ctx_t;
                    775:
                    776: /* ---------------------------------------------------------------------- */
                    777:
                    778:
                    779: /* The polynomial hashes use Horner's rule to evaluate a polynomial one
                    780:  * word at a time. As described in the specification, poly32 and poly64
                    781:  * require keys from special domains. The following implementations exploit
                    782:  * the special domains to avoid overflow. The results are not guaranteed to
                    783:  * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
                    784:  * patches any errant values.
                    785:  */
                    786:
                    787: static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
                    788: {
                    789:     UINT32 key_hi = (UINT32)(key >> 32),
                    790:            key_lo = (UINT32)key,
                    791:            cur_hi = (UINT32)(cur >> 32),
                    792:            cur_lo = (UINT32)cur,
                    793:            x_lo,
                    794:            x_hi;
                    795:     UINT64 X,T,res;
                    796:
                    797:     X =  MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
                    798:     x_lo = (UINT32)X;
                    799:     x_hi = (UINT32)(X >> 32);
                    800:
                    801:     res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
                    802:
                    803:     T = ((UINT64)x_lo << 32);
                    804:     res += T;
                    805:     if (res < T)
                    806:         res += 59;
                    807:
                    808:     res += data;
                    809:     if (res < data)
                    810:         res += 59;
                    811:
                    812:     return res;
                    813: }
                    814:
                    815:
                    816: /* Although UMAC is specified to use a ramped polynomial hash scheme, this
                    817:  * implementation does not handle all ramp levels. Because we don't handle
                    818:  * the ramp up to p128 modulus in this implementation, we are limited to
                    819:  * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
                    820:  * bytes input to UMAC per tag, ie. 16MB).
                    821:  */
                    822: static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
                    823: {
                    824:     int i;
                    825:     UINT64 *data=(UINT64*)data_in;
                    826:
                    827:     for (i = 0; i < STREAMS; i++) {
                    828:         if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
                    829:             hc->poly_accum[i] = poly64(hc->poly_accum[i],
                    830:                                        hc->poly_key_8[i], p64 - 1);
                    831:             hc->poly_accum[i] = poly64(hc->poly_accum[i],
                    832:                                        hc->poly_key_8[i], (data[i] - 59));
                    833:         } else {
                    834:             hc->poly_accum[i] = poly64(hc->poly_accum[i],
                    835:                                        hc->poly_key_8[i], data[i]);
                    836:         }
                    837:     }
                    838: }
                    839:
                    840:
                    841: /* ---------------------------------------------------------------------- */
                    842:
                    843:
                    844: /* The final step in UHASH is an inner-product hash. The poly hash
                    845:  * produces a result not neccesarily WORD_LEN bytes long. The inner-
                    846:  * product hash breaks the polyhash output into 16-bit chunks and
                    847:  * multiplies each with a 36 bit key.
                    848:  */
                    849:
                    850: static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
                    851: {
                    852:     t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);
                    853:     t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
                    854:     t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
                    855:     t = t + ipkp[3] * (UINT64)(UINT16)(data);
                    856:
                    857:     return t;
                    858: }
                    859:
                    860: static UINT32 ip_reduce_p36(UINT64 t)
                    861: {
                    862: /* Divisionless modular reduction */
                    863:     UINT64 ret;
                    864:
                    865:     ret = (t & m36) + 5 * (t >> 36);
                    866:     if (ret >= p36)
                    867:         ret -= p36;
                    868:
                    869:     /* return least significant 32 bits */
                    870:     return (UINT32)(ret);
                    871: }
                    872:
                    873:
                    874: /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
                    875:  * the polyhash stage is skipped and ip_short is applied directly to the
                    876:  * NH output.
                    877:  */
                    878: static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
                    879: {
                    880:     UINT64 t;
                    881:     UINT64 *nhp = (UINT64 *)nh_res;
                    882:
                    883:     t  = ip_aux(0,ahc->ip_keys, nhp[0]);
                    884:     STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
                    885: #if (UMAC_OUTPUT_LEN >= 8)
                    886:     t  = ip_aux(0,ahc->ip_keys+4, nhp[1]);
                    887:     STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]);
                    888: #endif
                    889: #if (UMAC_OUTPUT_LEN >= 12)
                    890:     t  = ip_aux(0,ahc->ip_keys+8, nhp[2]);
                    891:     STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]);
                    892: #endif
                    893: #if (UMAC_OUTPUT_LEN == 16)
                    894:     t  = ip_aux(0,ahc->ip_keys+12, nhp[3]);
                    895:     STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]);
                    896: #endif
                    897: }
                    898:
                    899: /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
                    900:  * the polyhash stage is not skipped and ip_long is applied to the
                    901:  * polyhash output.
                    902:  */
                    903: static void ip_long(uhash_ctx_t ahc, u_char *res)
                    904: {
                    905:     int i;
                    906:     UINT64 t;
                    907:
                    908:     for (i = 0; i < STREAMS; i++) {
                    909:         /* fix polyhash output not in Z_p64 */
                    910:         if (ahc->poly_accum[i] >= p64)
                    911:             ahc->poly_accum[i] -= p64;
                    912:         t  = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
                    913:         STORE_UINT32_BIG((UINT32 *)res+i,
                    914:                          ip_reduce_p36(t) ^ ahc->ip_trans[i]);
                    915:     }
                    916: }
                    917:
                    918:
                    919: /* ---------------------------------------------------------------------- */
                    920:
                    921: /* ---------------------------------------------------------------------- */
                    922:
                    923: /* Reset uhash context for next hash session */
                    924: static int uhash_reset(uhash_ctx_t pc)
                    925: {
                    926:     nh_reset(&pc->hash);
                    927:     pc->msg_len = 0;
                    928:     pc->poly_accum[0] = 1;
                    929: #if (UMAC_OUTPUT_LEN >= 8)
                    930:     pc->poly_accum[1] = 1;
                    931: #endif
                    932: #if (UMAC_OUTPUT_LEN >= 12)
                    933:     pc->poly_accum[2] = 1;
                    934: #endif
                    935: #if (UMAC_OUTPUT_LEN == 16)
                    936:     pc->poly_accum[3] = 1;
                    937: #endif
                    938:     return 1;
                    939: }
                    940:
                    941: /* ---------------------------------------------------------------------- */
                    942:
                    943: /* Given a pointer to the internal key needed by kdf() and a uhash context,
                    944:  * initialize the NH context and generate keys needed for poly and inner-
                    945:  * product hashing. All keys are endian adjusted in memory so that native
                    946:  * loads cause correct keys to be in registers during calculation.
                    947:  */
                    948: static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
                    949: {
                    950:     int i;
                    951:     UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
                    952:
                    953:     /* Zero the entire uhash context */
                    954:     memset(ahc, 0, sizeof(uhash_ctx));
                    955:
                    956:     /* Initialize the L1 hash */
                    957:     nh_init(&ahc->hash, prf_key);
                    958:
                    959:     /* Setup L2 hash variables */
                    960:     kdf(buf, prf_key, 2, sizeof(buf));    /* Fill buffer with index 1 key */
                    961:     for (i = 0; i < STREAMS; i++) {
                    962:         /* Fill keys from the buffer, skipping bytes in the buffer not
                    963:          * used by this implementation. Endian reverse the keys if on a
                    964:          * little-endian computer.
                    965:          */
                    966:         memcpy(ahc->poly_key_8+i, buf+24*i, 8);
                    967:         endian_convert_if_le(ahc->poly_key_8+i, 8, 8);
                    968:         /* Mask the 64-bit keys to their special domain */
                    969:         ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
                    970:         ahc->poly_accum[i] = 1;  /* Our polyhash prepends a non-zero word */
                    971:     }
                    972:
                    973:     /* Setup L3-1 hash variables */
                    974:     kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
                    975:     for (i = 0; i < STREAMS; i++)
                    976:           memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
                    977:                                                  4*sizeof(UINT64));
                    978:     endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),
                    979:                                                   sizeof(ahc->ip_keys));
                    980:     for (i = 0; i < STREAMS*4; i++)
                    981:         ahc->ip_keys[i] %= p36;  /* Bring into Z_p36 */
                    982:
                    983:     /* Setup L3-2 hash variables    */
                    984:     /* Fill buffer with index 4 key */
                    985:     kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
                    986:     endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),
                    987:                          STREAMS * sizeof(UINT32));
                    988: }
                    989:
                    990: /* ---------------------------------------------------------------------- */
                    991:
                    992: #if 0
                    993: static uhash_ctx_t uhash_alloc(u_char key[])
                    994: {
                    995: /* Allocate memory and force to a 16-byte boundary. */
                    996:     uhash_ctx_t ctx;
                    997:     u_char bytes_to_add;
                    998:     aes_int_key prf_key;
                    999:
                   1000:     ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
                   1001:     if (ctx) {
                   1002:         if (ALLOC_BOUNDARY) {
                   1003:             bytes_to_add = ALLOC_BOUNDARY -
                   1004:                               ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1));
                   1005:             ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add);
                   1006:             *((u_char *)ctx - 1) = bytes_to_add;
                   1007:         }
                   1008:         aes_key_setup(key,prf_key);
                   1009:         uhash_init(ctx, prf_key);
                   1010:     }
                   1011:     return (ctx);
                   1012: }
                   1013: #endif
                   1014:
                   1015: /* ---------------------------------------------------------------------- */
                   1016:
                   1017: #if 0
                   1018: static int uhash_free(uhash_ctx_t ctx)
                   1019: {
                   1020: /* Free memory allocated by uhash_alloc */
                   1021:     u_char bytes_to_sub;
                   1022:
                   1023:     if (ctx) {
                   1024:         if (ALLOC_BOUNDARY) {
                   1025:             bytes_to_sub = *((u_char *)ctx - 1);
                   1026:             ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub);
                   1027:         }
                   1028:         free(ctx);
                   1029:     }
                   1030:     return (1);
                   1031: }
                   1032: #endif
                   1033: /* ---------------------------------------------------------------------- */
                   1034:
1.7       djm      1035: static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len)
1.1       pvalchev 1036: /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
                   1037:  * hash each one with NH, calling the polyhash on each NH output.
                   1038:  */
                   1039: {
                   1040:     UWORD bytes_hashed, bytes_remaining;
1.3       pvalchev 1041:     UINT64 result_buf[STREAMS];
                   1042:     UINT8 *nh_result = (UINT8 *)&result_buf;
1.1       pvalchev 1043:
                   1044:     if (ctx->msg_len + len <= L1_KEY_LEN) {
1.7       djm      1045:         nh_update(&ctx->hash, (const UINT8 *)input, len);
1.1       pvalchev 1046:         ctx->msg_len += len;
                   1047:     } else {
                   1048:
                   1049:          bytes_hashed = ctx->msg_len % L1_KEY_LEN;
                   1050:          if (ctx->msg_len == L1_KEY_LEN)
                   1051:              bytes_hashed = L1_KEY_LEN;
                   1052:
                   1053:          if (bytes_hashed + len >= L1_KEY_LEN) {
                   1054:
                   1055:              /* If some bytes have been passed to the hash function      */
                   1056:              /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
                   1057:              /* bytes to complete the current nh_block.                  */
                   1058:              if (bytes_hashed) {
                   1059:                  bytes_remaining = (L1_KEY_LEN - bytes_hashed);
1.7       djm      1060:                  nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining);
1.1       pvalchev 1061:                  nh_final(&ctx->hash, nh_result);
                   1062:                  ctx->msg_len += bytes_remaining;
                   1063:                  poly_hash(ctx,(UINT32 *)nh_result);
                   1064:                  len -= bytes_remaining;
                   1065:                  input += bytes_remaining;
                   1066:              }
                   1067:
                   1068:              /* Hash directly from input stream if enough bytes */
                   1069:              while (len >= L1_KEY_LEN) {
1.7       djm      1070:                  nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN,
1.1       pvalchev 1071:                                    L1_KEY_LEN, nh_result);
                   1072:                  ctx->msg_len += L1_KEY_LEN;
                   1073:                  len -= L1_KEY_LEN;
                   1074:                  input += L1_KEY_LEN;
                   1075:                  poly_hash(ctx,(UINT32 *)nh_result);
                   1076:              }
                   1077:          }
                   1078:
                   1079:          /* pass remaining < L1_KEY_LEN bytes of input data to NH */
                   1080:          if (len) {
1.7       djm      1081:              nh_update(&ctx->hash, (const UINT8 *)input, len);
1.1       pvalchev 1082:              ctx->msg_len += len;
                   1083:          }
                   1084:      }
                   1085:
                   1086:     return (1);
                   1087: }
                   1088:
                   1089: /* ---------------------------------------------------------------------- */
                   1090:
                   1091: static int uhash_final(uhash_ctx_t ctx, u_char *res)
                   1092: /* Incorporate any pending data, pad, and generate tag */
                   1093: {
1.3       pvalchev 1094:     UINT64 result_buf[STREAMS];
                   1095:     UINT8 *nh_result = (UINT8 *)&result_buf;
1.1       pvalchev 1096:
                   1097:     if (ctx->msg_len > L1_KEY_LEN) {
                   1098:         if (ctx->msg_len % L1_KEY_LEN) {
                   1099:             nh_final(&ctx->hash, nh_result);
                   1100:             poly_hash(ctx,(UINT32 *)nh_result);
                   1101:         }
                   1102:         ip_long(ctx, res);
                   1103:     } else {
                   1104:         nh_final(&ctx->hash, nh_result);
                   1105:         ip_short(ctx,nh_result, res);
                   1106:     }
                   1107:     uhash_reset(ctx);
                   1108:     return (1);
                   1109: }
                   1110:
                   1111: /* ---------------------------------------------------------------------- */
                   1112:
                   1113: #if 0
                   1114: static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
                   1115: /* assumes that msg is in a writable buffer of length divisible by */
                   1116: /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed.           */
                   1117: {
                   1118:     UINT8 nh_result[STREAMS*sizeof(UINT64)];
                   1119:     UINT32 nh_len;
                   1120:     int extra_zeroes_needed;
                   1121:
                   1122:     /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
                   1123:      * the polyhash.
                   1124:      */
                   1125:     if (len <= L1_KEY_LEN) {
                   1126:        if (len == 0)                  /* If zero length messages will not */
                   1127:                nh_len = L1_PAD_BOUNDARY;  /* be seen, comment out this case   */
                   1128:        else
                   1129:                nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
                   1130:         extra_zeroes_needed = nh_len - len;
                   1131:         zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
                   1132:         nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
                   1133:         ip_short(ahc,nh_result, res);
                   1134:     } else {
                   1135:         /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
                   1136:          * output to poly_hash().
                   1137:          */
                   1138:         do {
                   1139:             nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result);
                   1140:             poly_hash(ahc,(UINT32 *)nh_result);
                   1141:             len -= L1_KEY_LEN;
                   1142:             msg += L1_KEY_LEN;
                   1143:         } while (len >= L1_KEY_LEN);
                   1144:         if (len) {
                   1145:             nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
                   1146:             extra_zeroes_needed = nh_len - len;
                   1147:             zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
                   1148:             nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
                   1149:             poly_hash(ahc,(UINT32 *)nh_result);
                   1150:         }
                   1151:
                   1152:         ip_long(ahc, res);
                   1153:     }
                   1154:
                   1155:     uhash_reset(ahc);
                   1156:     return 1;
                   1157: }
                   1158: #endif
                   1159:
                   1160: /* ---------------------------------------------------------------------- */
                   1161: /* ---------------------------------------------------------------------- */
                   1162: /* ----- Begin UMAC Section --------------------------------------------- */
                   1163: /* ---------------------------------------------------------------------- */
                   1164: /* ---------------------------------------------------------------------- */
                   1165:
                   1166: /* The UMAC interface has two interfaces, an all-at-once interface where
                   1167:  * the entire message to be authenticated is passed to UMAC in one buffer,
                   1168:  * and a sequential interface where the message is presented a little at a
                   1169:  * time. The all-at-once is more optimaized than the sequential version and
                   1170:  * should be preferred when the sequential interface is not required.
                   1171:  */
                   1172: struct umac_ctx {
                   1173:     uhash_ctx hash;          /* Hash function for message compression    */
                   1174:     pdf_ctx pdf;             /* PDF for hashed output                    */
                   1175:     void *free_ptr;          /* Address to free this struct via          */
                   1176: } umac_ctx;
                   1177:
                   1178: /* ---------------------------------------------------------------------- */
                   1179:
                   1180: #if 0
                   1181: int umac_reset(struct umac_ctx *ctx)
                   1182: /* Reset the hash function to begin a new authentication.        */
                   1183: {
                   1184:     uhash_reset(&ctx->hash);
                   1185:     return (1);
                   1186: }
                   1187: #endif
                   1188:
                   1189: /* ---------------------------------------------------------------------- */
                   1190:
                   1191: int umac_delete(struct umac_ctx *ctx)
                   1192: /* Deallocate the ctx structure */
                   1193: {
                   1194:     if (ctx) {
                   1195:         if (ALLOC_BOUNDARY)
                   1196:             ctx = (struct umac_ctx *)ctx->free_ptr;
1.5       djm      1197:         free(ctx);
1.1       pvalchev 1198:     }
                   1199:     return (1);
                   1200: }
                   1201:
                   1202: /* ---------------------------------------------------------------------- */
                   1203:
1.7       djm      1204: struct umac_ctx *umac_new(const u_char key[])
1.1       pvalchev 1205: /* Dynamically allocate a umac_ctx struct, initialize variables,
                   1206:  * generate subkeys from key. Align to 16-byte boundary.
                   1207:  */
                   1208: {
                   1209:     struct umac_ctx *ctx, *octx;
                   1210:     size_t bytes_to_add;
                   1211:     aes_int_key prf_key;
                   1212:
1.8       djm      1213:     octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY);
1.1       pvalchev 1214:     if (ctx) {
                   1215:         if (ALLOC_BOUNDARY) {
                   1216:             bytes_to_add = ALLOC_BOUNDARY -
                   1217:                               ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1));
                   1218:             ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add);
                   1219:         }
                   1220:         ctx->free_ptr = octx;
1.7       djm      1221:         aes_key_setup(key, prf_key);
1.1       pvalchev 1222:         pdf_init(&ctx->pdf, prf_key);
                   1223:         uhash_init(&ctx->hash, prf_key);
                   1224:     }
                   1225:
                   1226:     return (ctx);
                   1227: }
                   1228:
                   1229: /* ---------------------------------------------------------------------- */
                   1230:
1.7       djm      1231: int umac_final(struct umac_ctx *ctx, u_char tag[], const u_char nonce[8])
1.1       pvalchev 1232: /* Incorporate any pending data, pad, and generate tag */
                   1233: {
                   1234:     uhash_final(&ctx->hash, (u_char *)tag);
1.7       djm      1235:     pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag);
1.1       pvalchev 1236:
                   1237:     return (1);
                   1238: }
                   1239:
                   1240: /* ---------------------------------------------------------------------- */
                   1241:
1.7       djm      1242: int umac_update(struct umac_ctx *ctx, const u_char *input, long len)
1.1       pvalchev 1243: /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and   */
                   1244: /* hash each one, calling the PDF on the hashed output whenever the hash- */
                   1245: /* output buffer is full.                                                 */
                   1246: {
                   1247:     uhash_update(&ctx->hash, input, len);
                   1248:     return (1);
                   1249: }
                   1250:
                   1251: /* ---------------------------------------------------------------------- */
                   1252:
                   1253: #if 0
                   1254: int umac(struct umac_ctx *ctx, u_char *input,
                   1255:          long len, u_char tag[],
                   1256:          u_char nonce[8])
                   1257: /* All-in-one version simply calls umac_update() and umac_final().        */
                   1258: {
                   1259:     uhash(&ctx->hash, input, len, (u_char *)tag);
                   1260:     pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
                   1261:
                   1262:     return (1);
                   1263: }
                   1264: #endif
                   1265:
                   1266: /* ---------------------------------------------------------------------- */
                   1267: /* ---------------------------------------------------------------------- */
                   1268: /* ----- End UMAC Section ----------------------------------------------- */
                   1269: /* ---------------------------------------------------------------------- */
                   1270: /* ---------------------------------------------------------------------- */