[BACK]Return to umac.c CVS log [TXT][DIR] Up to [local] / src / usr.bin / ssh

Annotation of src/usr.bin/ssh/umac.c, Revision 1.15

1.15    ! djm         1: /* $OpenBSD: umac.c,v 1.14 2017/11/28 06:04:51 djm Exp $ */
1.1       pvalchev    2: /* -----------------------------------------------------------------------
1.14      djm         3:  *
1.1       pvalchev    4:  * umac.c -- C Implementation UMAC Message Authentication
                      5:  *
                      6:  * Version 0.93b of rfc4418.txt -- 2006 July 18
                      7:  *
                      8:  * For a full description of UMAC message authentication see the UMAC
                      9:  * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
                     10:  * Please report bugs and suggestions to the UMAC webpage.
                     11:  *
                     12:  * Copyright (c) 1999-2006 Ted Krovetz
1.14      djm        13:  *
1.1       pvalchev   14:  * Permission to use, copy, modify, and distribute this software and
                     15:  * its documentation for any purpose and with or without fee, is hereby
                     16:  * granted provided that the above copyright notice appears in all copies
                     17:  * and in supporting documentation, and that the name of the copyright
                     18:  * holder not be used in advertising or publicity pertaining to
                     19:  * distribution of the software without specific, written prior permission.
                     20:  *
1.14      djm        21:  * Comments should be directed to Ted Krovetz (tdk@acm.org)
                     22:  *
1.1       pvalchev   23:  * ---------------------------------------------------------------------- */
1.13      djm        24:
1.1       pvalchev   25:  /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
                     26:   *
                     27:   * 1) This version does not work properly on messages larger than 16MB
                     28:   *
                     29:   * 2) If you set the switch to use SSE2, then all data must be 16-byte
                     30:   *    aligned
                     31:   *
                     32:   * 3) When calling the function umac(), it is assumed that msg is in
                     33:   * a writable buffer of length divisible by 32 bytes. The message itself
                     34:   * does not have to fill the entire buffer, but bytes beyond msg may be
                     35:   * zeroed.
                     36:   *
                     37:   * 4) Three free AES implementations are supported by this implementation of
                     38:   * UMAC. Paulo Barreto's version is in the public domain and can be found
                     39:   * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
                     40:   * "Barreto"). The only two files needed are rijndael-alg-fst.c and
                     41:   * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
                     42:   * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It
                     43:   * includes a fast IA-32 assembly version. The OpenSSL crypo library is
                     44:   * the third.
                     45:   *
                     46:   * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
                     47:   * produced under gcc with optimizations set -O3 or higher. Dunno why.
                     48:   *
                     49:   /////////////////////////////////////////////////////////////////////// */
1.13      djm        50:
1.1       pvalchev   51: /* ---------------------------------------------------------------------- */
                     52: /* --- User Switches ---------------------------------------------------- */
                     53: /* ---------------------------------------------------------------------- */
                     54:
                     55: #define UMAC_OUTPUT_LEN     8  /* Alowable: 4, 8, 12, 16                  */
                     56: /* #define FORCE_C_ONLY        1  ANSI C and 64-bit integers req'd        */
                     57: /* #define AES_IMPLEMENTAION   1  1 = OpenSSL, 2 = Barreto, 3 = Gladman   */
                     58: /* #define SSE2                0  Is SSE2 is available?                   */
                     59: /* #define RUN_TESTS           0  Run basic correctness/speed tests       */
                     60: /* #define UMAC_AE_SUPPORT     0  Enable auhthenticated encrytion         */
                     61:
                     62: /* ---------------------------------------------------------------------- */
                     63: /* -- Global Includes --------------------------------------------------- */
                     64: /* ---------------------------------------------------------------------- */
                     65:
                     66: #include <sys/types.h>
1.11      guenther   67: #include <endian.h>
1.9       djm        68: #include <string.h>
                     69: #include <stdio.h>
                     70: #include <stdlib.h>
                     71: #include <stddef.h>
1.1       pvalchev   72:
1.2       stevesk    73: #include "xmalloc.h"
1.1       pvalchev   74: #include "umac.h"
1.9       djm        75: #include "misc.h"
1.1       pvalchev   76:
                     77: /* ---------------------------------------------------------------------- */
                     78: /* --- Primitive Data Types ---                                           */
                     79: /* ---------------------------------------------------------------------- */
                     80:
                     81: /* The following assumptions may need change on your system */
                     82: typedef u_int8_t       UINT8;  /* 1 byte   */
                     83: typedef u_int16_t      UINT16; /* 2 byte   */
                     84: typedef u_int32_t      UINT32; /* 4 byte   */
                     85: typedef u_int64_t      UINT64; /* 8 bytes  */
                     86: typedef unsigned int   UWORD;  /* Register */
                     87:
                     88: /* ---------------------------------------------------------------------- */
                     89: /* --- Constants -------------------------------------------------------- */
                     90: /* ---------------------------------------------------------------------- */
                     91:
                     92: #define UMAC_KEY_LEN           16  /* UMAC takes 16 bytes of external key */
                     93:
                     94: /* Message "words" are read from memory in an endian-specific manner.     */
                     95: /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must    */
                     96: /* be set true if the host computer is little-endian.                     */
                     97:
                     98: #if BYTE_ORDER == LITTLE_ENDIAN
                     99: #define __LITTLE_ENDIAN__ 1
                    100: #else
                    101: #define __LITTLE_ENDIAN__ 0
                    102: #endif
                    103:
                    104: /* ---------------------------------------------------------------------- */
                    105: /* ---------------------------------------------------------------------- */
                    106: /* ----- Architecture Specific ------------------------------------------ */
                    107: /* ---------------------------------------------------------------------- */
                    108: /* ---------------------------------------------------------------------- */
                    109:
                    110:
                    111: /* ---------------------------------------------------------------------- */
                    112: /* ---------------------------------------------------------------------- */
                    113: /* ----- Primitive Routines --------------------------------------------- */
                    114: /* ---------------------------------------------------------------------- */
                    115: /* ---------------------------------------------------------------------- */
                    116:
                    117:
                    118: /* ---------------------------------------------------------------------- */
                    119: /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
                    120: /* ---------------------------------------------------------------------- */
                    121:
                    122: #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
                    123:
                    124: /* ---------------------------------------------------------------------- */
                    125: /* --- Endian Conversion --- Forcing assembly on some platforms           */
                    126: /* ---------------------------------------------------------------------- */
                    127:
                    128: /* The following definitions use the above reversal-primitives to do the right
                    129:  * thing on endian specific load and stores.
                    130:  */
                    131:
1.9       djm       132: #if BYTE_ORDER == LITTLE_ENDIAN
                    133: #define LOAD_UINT32_REVERSED(p)                get_u32(p)
1.15    ! djm       134: #define STORE_UINT32_REVERSED(p,v)     put_u32(p,v)
1.1       pvalchev  135: #else
1.9       djm       136: #define LOAD_UINT32_REVERSED(p)                get_u32_le(p)
1.15    ! djm       137: #define STORE_UINT32_REVERSED(p,v)     put_u32_le(p,v)
1.1       pvalchev  138: #endif
1.9       djm       139:
                    140: #define LOAD_UINT32_LITTLE(p)           (get_u32_le(p))
                    141: #define STORE_UINT32_BIG(p,v)           put_u32(p, v)
1.1       pvalchev  142:
                    143:
                    144:
                    145: /* ---------------------------------------------------------------------- */
                    146: /* ---------------------------------------------------------------------- */
                    147: /* ----- Begin KDF & PDF Section ---------------------------------------- */
                    148: /* ---------------------------------------------------------------------- */
                    149: /* ---------------------------------------------------------------------- */
                    150:
                    151: /* UMAC uses AES with 16 byte block and key lengths */
                    152: #define AES_BLOCK_LEN  16
                    153:
1.10      naddy     154: #ifdef WITH_OPENSSL
1.1       pvalchev  155: #include <openssl/aes.h>
                    156: typedef AES_KEY aes_int_key[1];
                    157: #define aes_encryption(in,out,int_key)                  \
                    158:   AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
                    159: #define aes_key_setup(key,int_key)                      \
1.7       djm       160:   AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN*8,int_key)
1.10      naddy     161: #else
                    162: #include "rijndael.h"
                    163: #define AES_ROUNDS ((UMAC_KEY_LEN / 4) + 6)
                    164: typedef UINT8 aes_int_key[AES_ROUNDS+1][4][4]; /* AES internal */
                    165: #define aes_encryption(in,out,int_key) \
                    166:   rijndaelEncrypt((u32 *)(int_key), AES_ROUNDS, (u8 *)(in), (u8 *)(out))
                    167: #define aes_key_setup(key,int_key) \
                    168:   rijndaelKeySetupEnc((u32 *)(int_key), (const unsigned char *)(key), \
                    169:   UMAC_KEY_LEN*8)
                    170: #endif
1.1       pvalchev  171:
                    172: /* The user-supplied UMAC key is stretched using AES in a counter
                    173:  * mode to supply all random bits needed by UMAC. The kdf function takes
                    174:  * an AES internal key representation 'key' and writes a stream of
                    175:  * 'nbytes' bytes to the memory pointed at by 'buffer_ptr'. Each distinct
                    176:  * 'ndx' causes a distinct byte stream.
                    177:  */
                    178: static void kdf(void *buffer_ptr, aes_int_key key, UINT8 ndx, int nbytes)
                    179: {
                    180:     UINT8 in_buf[AES_BLOCK_LEN] = {0};
                    181:     UINT8 out_buf[AES_BLOCK_LEN];
                    182:     UINT8 *dst_buf = (UINT8 *)buffer_ptr;
                    183:     int i;
1.13      djm       184:
1.1       pvalchev  185:     /* Setup the initial value */
                    186:     in_buf[AES_BLOCK_LEN-9] = ndx;
                    187:     in_buf[AES_BLOCK_LEN-1] = i = 1;
1.13      djm       188:
1.1       pvalchev  189:     while (nbytes >= AES_BLOCK_LEN) {
                    190:         aes_encryption(in_buf, out_buf, key);
                    191:         memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
                    192:         in_buf[AES_BLOCK_LEN-1] = ++i;
                    193:         nbytes -= AES_BLOCK_LEN;
                    194:         dst_buf += AES_BLOCK_LEN;
                    195:     }
                    196:     if (nbytes) {
                    197:         aes_encryption(in_buf, out_buf, key);
                    198:         memcpy(dst_buf,out_buf,nbytes);
                    199:     }
1.12      markus    200:     explicit_bzero(in_buf, sizeof(in_buf));
                    201:     explicit_bzero(out_buf, sizeof(out_buf));
1.1       pvalchev  202: }
                    203:
                    204: /* The final UHASH result is XOR'd with the output of a pseudorandom
1.14      djm       205:  * function. Here, we use AES to generate random output and
1.1       pvalchev  206:  * xor the appropriate bytes depending on the last bits of nonce.
                    207:  * This scheme is optimized for sequential, increasing big-endian nonces.
                    208:  */
                    209:
                    210: typedef struct {
                    211:     UINT8 cache[AES_BLOCK_LEN];  /* Previous AES output is saved      */
                    212:     UINT8 nonce[AES_BLOCK_LEN];  /* The AES input making above cache  */
                    213:     aes_int_key prf_key;         /* Expanded AES key for PDF          */
                    214: } pdf_ctx;
                    215:
                    216: static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
                    217: {
                    218:     UINT8 buf[UMAC_KEY_LEN];
1.13      djm       219:
1.1       pvalchev  220:     kdf(buf, prf_key, 0, UMAC_KEY_LEN);
                    221:     aes_key_setup(buf, pc->prf_key);
1.13      djm       222:
1.1       pvalchev  223:     /* Initialize pdf and cache */
                    224:     memset(pc->nonce, 0, sizeof(pc->nonce));
                    225:     aes_encryption(pc->nonce, pc->cache, pc->prf_key);
1.12      markus    226:     explicit_bzero(buf, sizeof(buf));
1.1       pvalchev  227: }
                    228:
1.7       djm       229: static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], UINT8 buf[8])
1.1       pvalchev  230: {
                    231:     /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
                    232:      * of the AES output. If last time around we returned the ndx-1st
                    233:      * element, then we may have the result in the cache already.
                    234:      */
1.13      djm       235:
1.1       pvalchev  236: #if (UMAC_OUTPUT_LEN == 4)
                    237: #define LOW_BIT_MASK 3
                    238: #elif (UMAC_OUTPUT_LEN == 8)
                    239: #define LOW_BIT_MASK 1
                    240: #elif (UMAC_OUTPUT_LEN > 8)
                    241: #define LOW_BIT_MASK 0
                    242: #endif
1.6       djm       243:     union {
                    244:         UINT8 tmp_nonce_lo[4];
                    245:         UINT32 align;
                    246:     } t;
1.1       pvalchev  247: #if LOW_BIT_MASK != 0
                    248:     int ndx = nonce[7] & LOW_BIT_MASK;
                    249: #endif
1.7       djm       250:     *(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1];
1.6       djm       251:     t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
1.13      djm       252:
1.6       djm       253:     if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) ||
1.7       djm       254:          (((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) )
1.1       pvalchev  255:     {
1.7       djm       256:         ((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0];
1.6       djm       257:         ((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0];
1.1       pvalchev  258:         aes_encryption(pc->nonce, pc->cache, pc->prf_key);
                    259:     }
1.13      djm       260:
1.1       pvalchev  261: #if (UMAC_OUTPUT_LEN == 4)
                    262:     *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx];
                    263: #elif (UMAC_OUTPUT_LEN == 8)
                    264:     *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx];
                    265: #elif (UMAC_OUTPUT_LEN == 12)
                    266:     ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
                    267:     ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2];
                    268: #elif (UMAC_OUTPUT_LEN == 16)
                    269:     ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
                    270:     ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1];
                    271: #endif
                    272: }
                    273:
                    274: /* ---------------------------------------------------------------------- */
                    275: /* ---------------------------------------------------------------------- */
                    276: /* ----- Begin NH Hash Section ------------------------------------------ */
                    277: /* ---------------------------------------------------------------------- */
                    278: /* ---------------------------------------------------------------------- */
                    279:
                    280: /* The NH-based hash functions used in UMAC are described in the UMAC paper
1.14      djm       281:  * and specification, both of which can be found at the UMAC website.
                    282:  * The interface to this implementation has two
1.1       pvalchev  283:  * versions, one expects the entire message being hashed to be passed
                    284:  * in a single buffer and returns the hash result immediately. The second
1.14      djm       285:  * allows the message to be passed in a sequence of buffers. In the
                    286:  * muliple-buffer interface, the client calls the routine nh_update() as
                    287:  * many times as necessary. When there is no more data to be fed to the
                    288:  * hash, the client calls nh_final() which calculates the hash output.
                    289:  * Before beginning another hash calculation the nh_reset() routine
                    290:  * must be called. The single-buffer routine, nh(), is equivalent to
                    291:  * the sequence of calls nh_update() and nh_final(); however it is
1.1       pvalchev  292:  * optimized and should be prefered whenever the multiple-buffer interface
1.14      djm       293:  * is not necessary. When using either interface, it is the client's
                    294:  * responsability to pass no more than L1_KEY_LEN bytes per hash result.
                    295:  *
                    296:  * The routine nh_init() initializes the nh_ctx data structure and
                    297:  * must be called once, before any other PDF routine.
1.1       pvalchev  298:  */
1.13      djm       299:
1.1       pvalchev  300:  /* The "nh_aux" routines do the actual NH hashing work. They
                    301:   * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
1.14      djm       302:   * produce output for all STREAMS NH iterations in one call,
1.1       pvalchev  303:   * allowing the parallel implementation of the streams.
                    304:   */
                    305:
                    306: #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied  */
                    307: #define L1_KEY_LEN         1024     /* Internal key bytes                 */
                    308: #define L1_KEY_SHIFT         16     /* Toeplitz key shift between streams */
                    309: #define L1_PAD_BOUNDARY      32     /* pad message to boundary multiple   */
                    310: #define ALLOC_BOUNDARY       16     /* Keep buffers aligned to this       */
                    311: #define HASH_BUF_BYTES       64     /* nh_aux_hb buffer multiple          */
                    312:
                    313: typedef struct {
                    314:     UINT8  nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */
1.4       djm       315:     UINT8  data   [HASH_BUF_BYTES];    /* Incoming data buffer           */
1.1       pvalchev  316:     int next_data_empty;    /* Bookeeping variable for data buffer.       */
                    317:     int bytes_hashed;        /* Bytes (out of L1_KEY_LEN) incorperated.   */
                    318:     UINT64 state[STREAMS];               /* on-line state     */
                    319: } nh_ctx;
                    320:
                    321:
                    322: #if (UMAC_OUTPUT_LEN == 4)
                    323:
1.7       djm       324: static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
1.14      djm       325: /* NH hashing primitive. Previous (partial) hash result is loaded and
1.1       pvalchev  326: * then stored via hp pointer. The length of the data pointed at by "dp",
                    327: * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32).  Key
1.14      djm       328: * is expected to be endian compensated in memory at key setup.
1.1       pvalchev  329: */
                    330: {
                    331:     UINT64 h;
                    332:     UWORD c = dlen / 32;
                    333:     UINT32 *k = (UINT32 *)kp;
1.7       djm       334:     const UINT32 *d = (const UINT32 *)dp;
1.1       pvalchev  335:     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
                    336:     UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
1.13      djm       337:
1.1       pvalchev  338:     h = *((UINT64 *)hp);
                    339:     do {
                    340:         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
                    341:         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
                    342:         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
                    343:         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
                    344:         k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
                    345:         k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
                    346:         h += MUL64((k0 + d0), (k4 + d4));
                    347:         h += MUL64((k1 + d1), (k5 + d5));
                    348:         h += MUL64((k2 + d2), (k6 + d6));
                    349:         h += MUL64((k3 + d3), (k7 + d7));
1.13      djm       350:
1.1       pvalchev  351:         d += 8;
                    352:         k += 8;
                    353:     } while (--c);
                    354:   *((UINT64 *)hp) = h;
                    355: }
                    356:
                    357: #elif (UMAC_OUTPUT_LEN == 8)
                    358:
1.7       djm       359: static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
1.1       pvalchev  360: /* Same as previous nh_aux, but two streams are handled in one pass,
                    361:  * reading and writing 16 bytes of hash-state per call.
                    362:  */
                    363: {
                    364:   UINT64 h1,h2;
                    365:   UWORD c = dlen / 32;
                    366:   UINT32 *k = (UINT32 *)kp;
1.7       djm       367:   const UINT32 *d = (const UINT32 *)dp;
1.1       pvalchev  368:   UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
                    369:   UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
                    370:         k8,k9,k10,k11;
                    371:
                    372:   h1 = *((UINT64 *)hp);
                    373:   h2 = *((UINT64 *)hp + 1);
                    374:   k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
                    375:   do {
                    376:     d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
                    377:     d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
                    378:     d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
                    379:     d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
                    380:     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
                    381:     k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
                    382:
                    383:     h1 += MUL64((k0 + d0), (k4 + d4));
                    384:     h2 += MUL64((k4 + d0), (k8 + d4));
                    385:
                    386:     h1 += MUL64((k1 + d1), (k5 + d5));
                    387:     h2 += MUL64((k5 + d1), (k9 + d5));
                    388:
                    389:     h1 += MUL64((k2 + d2), (k6 + d6));
                    390:     h2 += MUL64((k6 + d2), (k10 + d6));
                    391:
                    392:     h1 += MUL64((k3 + d3), (k7 + d7));
                    393:     h2 += MUL64((k7 + d3), (k11 + d7));
                    394:
                    395:     k0 = k8; k1 = k9; k2 = k10; k3 = k11;
                    396:
                    397:     d += 8;
                    398:     k += 8;
                    399:   } while (--c);
                    400:   ((UINT64 *)hp)[0] = h1;
                    401:   ((UINT64 *)hp)[1] = h2;
                    402: }
                    403:
                    404: #elif (UMAC_OUTPUT_LEN == 12)
                    405:
1.7       djm       406: static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
1.1       pvalchev  407: /* Same as previous nh_aux, but two streams are handled in one pass,
                    408:  * reading and writing 24 bytes of hash-state per call.
                    409: */
                    410: {
                    411:     UINT64 h1,h2,h3;
                    412:     UWORD c = dlen / 32;
                    413:     UINT32 *k = (UINT32 *)kp;
1.7       djm       414:     const UINT32 *d = (const UINT32 *)dp;
1.1       pvalchev  415:     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
                    416:     UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
                    417:         k8,k9,k10,k11,k12,k13,k14,k15;
1.13      djm       418:
1.1       pvalchev  419:     h1 = *((UINT64 *)hp);
                    420:     h2 = *((UINT64 *)hp + 1);
                    421:     h3 = *((UINT64 *)hp + 2);
                    422:     k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
                    423:     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
                    424:     do {
                    425:         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
                    426:         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
                    427:         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
                    428:         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
                    429:         k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
                    430:         k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
1.13      djm       431:
1.1       pvalchev  432:         h1 += MUL64((k0 + d0), (k4 + d4));
                    433:         h2 += MUL64((k4 + d0), (k8 + d4));
                    434:         h3 += MUL64((k8 + d0), (k12 + d4));
1.13      djm       435:
1.1       pvalchev  436:         h1 += MUL64((k1 + d1), (k5 + d5));
                    437:         h2 += MUL64((k5 + d1), (k9 + d5));
                    438:         h3 += MUL64((k9 + d1), (k13 + d5));
1.13      djm       439:
1.1       pvalchev  440:         h1 += MUL64((k2 + d2), (k6 + d6));
                    441:         h2 += MUL64((k6 + d2), (k10 + d6));
                    442:         h3 += MUL64((k10 + d2), (k14 + d6));
1.13      djm       443:
1.1       pvalchev  444:         h1 += MUL64((k3 + d3), (k7 + d7));
                    445:         h2 += MUL64((k7 + d3), (k11 + d7));
                    446:         h3 += MUL64((k11 + d3), (k15 + d7));
1.13      djm       447:
1.1       pvalchev  448:         k0 = k8; k1 = k9; k2 = k10; k3 = k11;
                    449:         k4 = k12; k5 = k13; k6 = k14; k7 = k15;
1.13      djm       450:
1.1       pvalchev  451:         d += 8;
                    452:         k += 8;
                    453:     } while (--c);
                    454:     ((UINT64 *)hp)[0] = h1;
                    455:     ((UINT64 *)hp)[1] = h2;
                    456:     ((UINT64 *)hp)[2] = h3;
                    457: }
                    458:
                    459: #elif (UMAC_OUTPUT_LEN == 16)
                    460:
1.7       djm       461: static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
1.1       pvalchev  462: /* Same as previous nh_aux, but two streams are handled in one pass,
                    463:  * reading and writing 24 bytes of hash-state per call.
                    464: */
                    465: {
                    466:     UINT64 h1,h2,h3,h4;
                    467:     UWORD c = dlen / 32;
                    468:     UINT32 *k = (UINT32 *)kp;
1.7       djm       469:     const UINT32 *d = (const UINT32 *)dp;
1.1       pvalchev  470:     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
                    471:     UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
                    472:         k8,k9,k10,k11,k12,k13,k14,k15,
                    473:         k16,k17,k18,k19;
1.13      djm       474:
1.1       pvalchev  475:     h1 = *((UINT64 *)hp);
                    476:     h2 = *((UINT64 *)hp + 1);
                    477:     h3 = *((UINT64 *)hp + 2);
                    478:     h4 = *((UINT64 *)hp + 3);
                    479:     k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
                    480:     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
                    481:     do {
                    482:         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
                    483:         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
                    484:         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
                    485:         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
                    486:         k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
                    487:         k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
                    488:         k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
1.13      djm       489:
1.1       pvalchev  490:         h1 += MUL64((k0 + d0), (k4 + d4));
                    491:         h2 += MUL64((k4 + d0), (k8 + d4));
                    492:         h3 += MUL64((k8 + d0), (k12 + d4));
                    493:         h4 += MUL64((k12 + d0), (k16 + d4));
1.13      djm       494:
1.1       pvalchev  495:         h1 += MUL64((k1 + d1), (k5 + d5));
                    496:         h2 += MUL64((k5 + d1), (k9 + d5));
                    497:         h3 += MUL64((k9 + d1), (k13 + d5));
                    498:         h4 += MUL64((k13 + d1), (k17 + d5));
1.13      djm       499:
1.1       pvalchev  500:         h1 += MUL64((k2 + d2), (k6 + d6));
                    501:         h2 += MUL64((k6 + d2), (k10 + d6));
                    502:         h3 += MUL64((k10 + d2), (k14 + d6));
                    503:         h4 += MUL64((k14 + d2), (k18 + d6));
1.13      djm       504:
1.1       pvalchev  505:         h1 += MUL64((k3 + d3), (k7 + d7));
                    506:         h2 += MUL64((k7 + d3), (k11 + d7));
                    507:         h3 += MUL64((k11 + d3), (k15 + d7));
                    508:         h4 += MUL64((k15 + d3), (k19 + d7));
1.13      djm       509:
1.1       pvalchev  510:         k0 = k8; k1 = k9; k2 = k10; k3 = k11;
                    511:         k4 = k12; k5 = k13; k6 = k14; k7 = k15;
                    512:         k8 = k16; k9 = k17; k10 = k18; k11 = k19;
1.13      djm       513:
1.1       pvalchev  514:         d += 8;
                    515:         k += 8;
                    516:     } while (--c);
                    517:     ((UINT64 *)hp)[0] = h1;
                    518:     ((UINT64 *)hp)[1] = h2;
                    519:     ((UINT64 *)hp)[2] = h3;
                    520:     ((UINT64 *)hp)[3] = h4;
                    521: }
                    522:
                    523: /* ---------------------------------------------------------------------- */
                    524: #endif  /* UMAC_OUTPUT_LENGTH */
                    525: /* ---------------------------------------------------------------------- */
                    526:
                    527:
                    528: /* ---------------------------------------------------------------------- */
                    529:
1.7       djm       530: static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
1.1       pvalchev  531: /* This function is a wrapper for the primitive NH hash functions. It takes
                    532:  * as argument "hc" the current hash context and a buffer which must be a
                    533:  * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
                    534:  * appropriately according to how much message has been hashed already.
                    535:  */
                    536: {
                    537:     UINT8 *key;
1.13      djm       538:
1.1       pvalchev  539:     key = hc->nh_key + hc->bytes_hashed;
                    540:     nh_aux(key, buf, hc->state, nbytes);
                    541: }
                    542:
                    543: /* ---------------------------------------------------------------------- */
                    544:
1.12      markus    545: #if (__LITTLE_ENDIAN__)
1.1       pvalchev  546: static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)
                    547: /* We endian convert the keys on little-endian computers to               */
                    548: /* compensate for the lack of big-endian memory reads during hashing.     */
                    549: {
                    550:     UWORD iters = num_bytes / bpw;
                    551:     if (bpw == 4) {
                    552:         UINT32 *p = (UINT32 *)buf;
                    553:         do {
                    554:             *p = LOAD_UINT32_REVERSED(p);
                    555:             p++;
                    556:         } while (--iters);
                    557:     } else if (bpw == 8) {
                    558:         UINT32 *p = (UINT32 *)buf;
                    559:         UINT32 t;
                    560:         do {
                    561:             t = LOAD_UINT32_REVERSED(p+1);
                    562:             p[1] = LOAD_UINT32_REVERSED(p);
                    563:             p[0] = t;
                    564:             p += 2;
                    565:         } while (--iters);
                    566:     }
                    567: }
                    568: #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
                    569: #else
                    570: #define endian_convert_if_le(x,y,z) do{}while(0)  /* Do nothing */
                    571: #endif
                    572:
                    573: /* ---------------------------------------------------------------------- */
                    574:
                    575: static void nh_reset(nh_ctx *hc)
                    576: /* Reset nh_ctx to ready for hashing of new data */
                    577: {
                    578:     hc->bytes_hashed = 0;
                    579:     hc->next_data_empty = 0;
                    580:     hc->state[0] = 0;
                    581: #if (UMAC_OUTPUT_LEN >= 8)
                    582:     hc->state[1] = 0;
                    583: #endif
                    584: #if (UMAC_OUTPUT_LEN >= 12)
                    585:     hc->state[2] = 0;
                    586: #endif
                    587: #if (UMAC_OUTPUT_LEN == 16)
                    588:     hc->state[3] = 0;
                    589: #endif
                    590:
                    591: }
                    592:
                    593: /* ---------------------------------------------------------------------- */
                    594:
                    595: static void nh_init(nh_ctx *hc, aes_int_key prf_key)
                    596: /* Generate nh_key, endian convert and reset to be ready for hashing.   */
                    597: {
                    598:     kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));
                    599:     endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key));
                    600:     nh_reset(hc);
                    601: }
                    602:
                    603: /* ---------------------------------------------------------------------- */
                    604:
1.7       djm       605: static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
1.1       pvalchev  606: /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an    */
                    607: /* even multiple of HASH_BUF_BYTES.                                       */
                    608: {
                    609:     UINT32 i,j;
1.13      djm       610:
1.1       pvalchev  611:     j = hc->next_data_empty;
                    612:     if ((j + nbytes) >= HASH_BUF_BYTES) {
                    613:         if (j) {
                    614:             i = HASH_BUF_BYTES - j;
                    615:             memcpy(hc->data+j, buf, i);
                    616:             nh_transform(hc,hc->data,HASH_BUF_BYTES);
                    617:             nbytes -= i;
                    618:             buf += i;
                    619:             hc->bytes_hashed += HASH_BUF_BYTES;
                    620:         }
                    621:         if (nbytes >= HASH_BUF_BYTES) {
                    622:             i = nbytes & ~(HASH_BUF_BYTES - 1);
                    623:             nh_transform(hc, buf, i);
                    624:             nbytes -= i;
                    625:             buf += i;
                    626:             hc->bytes_hashed += i;
                    627:         }
                    628:         j = 0;
                    629:     }
                    630:     memcpy(hc->data + j, buf, nbytes);
                    631:     hc->next_data_empty = j + nbytes;
                    632: }
                    633:
                    634: /* ---------------------------------------------------------------------- */
                    635:
                    636: static void zero_pad(UINT8 *p, int nbytes)
                    637: {
                    638: /* Write "nbytes" of zeroes, beginning at "p" */
                    639:     if (nbytes >= (int)sizeof(UWORD)) {
                    640:         while ((ptrdiff_t)p % sizeof(UWORD)) {
                    641:             *p = 0;
                    642:             nbytes--;
                    643:             p++;
                    644:         }
                    645:         while (nbytes >= (int)sizeof(UWORD)) {
                    646:             *(UWORD *)p = 0;
                    647:             nbytes -= sizeof(UWORD);
                    648:             p += sizeof(UWORD);
                    649:         }
                    650:     }
                    651:     while (nbytes) {
                    652:         *p = 0;
                    653:         nbytes--;
                    654:         p++;
                    655:     }
                    656: }
                    657:
                    658: /* ---------------------------------------------------------------------- */
                    659:
                    660: static void nh_final(nh_ctx *hc, UINT8 *result)
                    661: /* After passing some number of data buffers to nh_update() for integration
                    662:  * into an NH context, nh_final is called to produce a hash result. If any
                    663:  * bytes are in the buffer hc->data, incorporate them into the
                    664:  * NH context. Finally, add into the NH accumulation "state" the total number
                    665:  * of bits hashed. The resulting numbers are written to the buffer "result".
                    666:  * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
                    667:  */
                    668: {
                    669:     int nh_len, nbits;
                    670:
                    671:     if (hc->next_data_empty != 0) {
                    672:         nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &
                    673:                                                 ~(L1_PAD_BOUNDARY - 1));
1.14      djm       674:         zero_pad(hc->data + hc->next_data_empty,
1.1       pvalchev  675:                                           nh_len - hc->next_data_empty);
                    676:         nh_transform(hc, hc->data, nh_len);
                    677:         hc->bytes_hashed += hc->next_data_empty;
                    678:     } else if (hc->bytes_hashed == 0) {
1.15    ! djm       679:        nh_len = L1_PAD_BOUNDARY;
1.1       pvalchev  680:         zero_pad(hc->data, L1_PAD_BOUNDARY);
                    681:         nh_transform(hc, hc->data, nh_len);
                    682:     }
                    683:
                    684:     nbits = (hc->bytes_hashed << 3);
                    685:     ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;
                    686: #if (UMAC_OUTPUT_LEN >= 8)
                    687:     ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;
                    688: #endif
                    689: #if (UMAC_OUTPUT_LEN >= 12)
                    690:     ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;
                    691: #endif
                    692: #if (UMAC_OUTPUT_LEN == 16)
                    693:     ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;
                    694: #endif
                    695:     nh_reset(hc);
                    696: }
                    697:
                    698: /* ---------------------------------------------------------------------- */
                    699:
1.7       djm       700: static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len,
1.1       pvalchev  701:                UINT32 unpadded_len, UINT8 *result)
                    702: /* All-in-one nh_update() and nh_final() equivalent.
                    703:  * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
                    704:  * well aligned
                    705:  */
                    706: {
                    707:     UINT32 nbits;
1.13      djm       708:
1.1       pvalchev  709:     /* Initialize the hash state */
                    710:     nbits = (unpadded_len << 3);
1.13      djm       711:
1.1       pvalchev  712:     ((UINT64 *)result)[0] = nbits;
                    713: #if (UMAC_OUTPUT_LEN >= 8)
                    714:     ((UINT64 *)result)[1] = nbits;
                    715: #endif
                    716: #if (UMAC_OUTPUT_LEN >= 12)
                    717:     ((UINT64 *)result)[2] = nbits;
                    718: #endif
                    719: #if (UMAC_OUTPUT_LEN == 16)
                    720:     ((UINT64 *)result)[3] = nbits;
                    721: #endif
1.13      djm       722:
1.1       pvalchev  723:     nh_aux(hc->nh_key, buf, result, padded_len);
                    724: }
                    725:
                    726: /* ---------------------------------------------------------------------- */
                    727: /* ---------------------------------------------------------------------- */
                    728: /* ----- Begin UHASH Section -------------------------------------------- */
                    729: /* ---------------------------------------------------------------------- */
                    730: /* ---------------------------------------------------------------------- */
                    731:
                    732: /* UHASH is a multi-layered algorithm. Data presented to UHASH is first
                    733:  * hashed by NH. The NH output is then hashed by a polynomial-hash layer
                    734:  * unless the initial data to be hashed is short. After the polynomial-
                    735:  * layer, an inner-product hash is used to produce the final UHASH output.
                    736:  *
                    737:  * UHASH provides two interfaces, one all-at-once and another where data
                    738:  * buffers are presented sequentially. In the sequential interface, the
                    739:  * UHASH client calls the routine uhash_update() as many times as necessary.
                    740:  * When there is no more data to be fed to UHASH, the client calls
1.14      djm       741:  * uhash_final() which
                    742:  * calculates the UHASH output. Before beginning another UHASH calculation
                    743:  * the uhash_reset() routine must be called. The all-at-once UHASH routine,
                    744:  * uhash(), is equivalent to the sequence of calls uhash_update() and
                    745:  * uhash_final(); however it is optimized and should be
                    746:  * used whenever the sequential interface is not necessary.
                    747:  *
                    748:  * The routine uhash_init() initializes the uhash_ctx data structure and
1.1       pvalchev  749:  * must be called once, before any other UHASH routine.
1.14      djm       750:  */
1.1       pvalchev  751:
                    752: /* ---------------------------------------------------------------------- */
                    753: /* ----- Constants and uhash_ctx ---------------------------------------- */
                    754: /* ---------------------------------------------------------------------- */
                    755:
                    756: /* ---------------------------------------------------------------------- */
                    757: /* ----- Poly hash and Inner-Product hash Constants --------------------- */
                    758: /* ---------------------------------------------------------------------- */
                    759:
                    760: /* Primes and masks */
                    761: #define p36    ((UINT64)0x0000000FFFFFFFFBull)              /* 2^36 -  5 */
                    762: #define p64    ((UINT64)0xFFFFFFFFFFFFFFC5ull)              /* 2^64 - 59 */
                    763: #define m36    ((UINT64)0x0000000FFFFFFFFFull)  /* The low 36 of 64 bits */
                    764:
                    765:
                    766: /* ---------------------------------------------------------------------- */
                    767:
                    768: typedef struct uhash_ctx {
                    769:     nh_ctx hash;                          /* Hash context for L1 NH hash  */
                    770:     UINT64 poly_key_8[STREAMS];           /* p64 poly keys                */
                    771:     UINT64 poly_accum[STREAMS];           /* poly hash result             */
                    772:     UINT64 ip_keys[STREAMS*4];            /* Inner-product keys           */
                    773:     UINT32 ip_trans[STREAMS];             /* Inner-product translation    */
                    774:     UINT32 msg_len;                       /* Total length of data passed  */
                    775:                                           /* to uhash */
                    776: } uhash_ctx;
                    777: typedef struct uhash_ctx *uhash_ctx_t;
                    778:
                    779: /* ---------------------------------------------------------------------- */
                    780:
                    781:
                    782: /* The polynomial hashes use Horner's rule to evaluate a polynomial one
                    783:  * word at a time. As described in the specification, poly32 and poly64
                    784:  * require keys from special domains. The following implementations exploit
                    785:  * the special domains to avoid overflow. The results are not guaranteed to
                    786:  * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
                    787:  * patches any errant values.
                    788:  */
                    789:
                    790: static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
                    791: {
                    792:     UINT32 key_hi = (UINT32)(key >> 32),
                    793:            key_lo = (UINT32)key,
                    794:            cur_hi = (UINT32)(cur >> 32),
                    795:            cur_lo = (UINT32)cur,
                    796:            x_lo,
                    797:            x_hi;
                    798:     UINT64 X,T,res;
1.13      djm       799:
1.1       pvalchev  800:     X =  MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
                    801:     x_lo = (UINT32)X;
                    802:     x_hi = (UINT32)(X >> 32);
1.13      djm       803:
1.1       pvalchev  804:     res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
1.13      djm       805:
1.1       pvalchev  806:     T = ((UINT64)x_lo << 32);
                    807:     res += T;
                    808:     if (res < T)
                    809:         res += 59;
                    810:
                    811:     res += data;
                    812:     if (res < data)
                    813:         res += 59;
                    814:
                    815:     return res;
                    816: }
                    817:
                    818:
                    819: /* Although UMAC is specified to use a ramped polynomial hash scheme, this
                    820:  * implementation does not handle all ramp levels. Because we don't handle
                    821:  * the ramp up to p128 modulus in this implementation, we are limited to
                    822:  * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
                    823:  * bytes input to UMAC per tag, ie. 16MB).
                    824:  */
                    825: static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
                    826: {
                    827:     int i;
                    828:     UINT64 *data=(UINT64*)data_in;
1.13      djm       829:
1.1       pvalchev  830:     for (i = 0; i < STREAMS; i++) {
                    831:         if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
1.14      djm       832:             hc->poly_accum[i] = poly64(hc->poly_accum[i],
1.1       pvalchev  833:                                        hc->poly_key_8[i], p64 - 1);
                    834:             hc->poly_accum[i] = poly64(hc->poly_accum[i],
                    835:                                        hc->poly_key_8[i], (data[i] - 59));
                    836:         } else {
                    837:             hc->poly_accum[i] = poly64(hc->poly_accum[i],
                    838:                                        hc->poly_key_8[i], data[i]);
                    839:         }
                    840:     }
                    841: }
                    842:
                    843:
                    844: /* ---------------------------------------------------------------------- */
                    845:
                    846:
                    847: /* The final step in UHASH is an inner-product hash. The poly hash
                    848:  * produces a result not neccesarily WORD_LEN bytes long. The inner-
                    849:  * product hash breaks the polyhash output into 16-bit chunks and
                    850:  * multiplies each with a 36 bit key.
                    851:  */
                    852:
                    853: static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
                    854: {
                    855:     t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);
                    856:     t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
                    857:     t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
                    858:     t = t + ipkp[3] * (UINT64)(UINT16)(data);
1.13      djm       859:
1.1       pvalchev  860:     return t;
                    861: }
                    862:
                    863: static UINT32 ip_reduce_p36(UINT64 t)
                    864: {
                    865: /* Divisionless modular reduction */
                    866:     UINT64 ret;
1.13      djm       867:
1.1       pvalchev  868:     ret = (t & m36) + 5 * (t >> 36);
                    869:     if (ret >= p36)
                    870:         ret -= p36;
                    871:
                    872:     /* return least significant 32 bits */
                    873:     return (UINT32)(ret);
                    874: }
                    875:
                    876:
                    877: /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
                    878:  * the polyhash stage is skipped and ip_short is applied directly to the
                    879:  * NH output.
                    880:  */
                    881: static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
                    882: {
                    883:     UINT64 t;
                    884:     UINT64 *nhp = (UINT64 *)nh_res;
1.13      djm       885:
1.1       pvalchev  886:     t  = ip_aux(0,ahc->ip_keys, nhp[0]);
                    887:     STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
                    888: #if (UMAC_OUTPUT_LEN >= 8)
                    889:     t  = ip_aux(0,ahc->ip_keys+4, nhp[1]);
                    890:     STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]);
                    891: #endif
                    892: #if (UMAC_OUTPUT_LEN >= 12)
                    893:     t  = ip_aux(0,ahc->ip_keys+8, nhp[2]);
                    894:     STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]);
                    895: #endif
                    896: #if (UMAC_OUTPUT_LEN == 16)
                    897:     t  = ip_aux(0,ahc->ip_keys+12, nhp[3]);
                    898:     STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]);
                    899: #endif
                    900: }
                    901:
                    902: /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
                    903:  * the polyhash stage is not skipped and ip_long is applied to the
                    904:  * polyhash output.
                    905:  */
                    906: static void ip_long(uhash_ctx_t ahc, u_char *res)
                    907: {
                    908:     int i;
                    909:     UINT64 t;
                    910:
                    911:     for (i = 0; i < STREAMS; i++) {
                    912:         /* fix polyhash output not in Z_p64 */
                    913:         if (ahc->poly_accum[i] >= p64)
                    914:             ahc->poly_accum[i] -= p64;
                    915:         t  = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
1.14      djm       916:         STORE_UINT32_BIG((UINT32 *)res+i,
1.1       pvalchev  917:                          ip_reduce_p36(t) ^ ahc->ip_trans[i]);
                    918:     }
                    919: }
                    920:
                    921:
                    922: /* ---------------------------------------------------------------------- */
                    923:
                    924: /* ---------------------------------------------------------------------- */
                    925:
                    926: /* Reset uhash context for next hash session */
                    927: static int uhash_reset(uhash_ctx_t pc)
                    928: {
                    929:     nh_reset(&pc->hash);
                    930:     pc->msg_len = 0;
                    931:     pc->poly_accum[0] = 1;
                    932: #if (UMAC_OUTPUT_LEN >= 8)
                    933:     pc->poly_accum[1] = 1;
                    934: #endif
                    935: #if (UMAC_OUTPUT_LEN >= 12)
                    936:     pc->poly_accum[2] = 1;
                    937: #endif
                    938: #if (UMAC_OUTPUT_LEN == 16)
                    939:     pc->poly_accum[3] = 1;
                    940: #endif
                    941:     return 1;
                    942: }
                    943:
                    944: /* ---------------------------------------------------------------------- */
                    945:
                    946: /* Given a pointer to the internal key needed by kdf() and a uhash context,
                    947:  * initialize the NH context and generate keys needed for poly and inner-
                    948:  * product hashing. All keys are endian adjusted in memory so that native
                    949:  * loads cause correct keys to be in registers during calculation.
                    950:  */
                    951: static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
                    952: {
                    953:     int i;
                    954:     UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
1.13      djm       955:
1.1       pvalchev  956:     /* Zero the entire uhash context */
                    957:     memset(ahc, 0, sizeof(uhash_ctx));
                    958:
                    959:     /* Initialize the L1 hash */
                    960:     nh_init(&ahc->hash, prf_key);
1.13      djm       961:
1.1       pvalchev  962:     /* Setup L2 hash variables */
                    963:     kdf(buf, prf_key, 2, sizeof(buf));    /* Fill buffer with index 1 key */
                    964:     for (i = 0; i < STREAMS; i++) {
                    965:         /* Fill keys from the buffer, skipping bytes in the buffer not
                    966:          * used by this implementation. Endian reverse the keys if on a
                    967:          * little-endian computer.
                    968:          */
                    969:         memcpy(ahc->poly_key_8+i, buf+24*i, 8);
                    970:         endian_convert_if_le(ahc->poly_key_8+i, 8, 8);
                    971:         /* Mask the 64-bit keys to their special domain */
                    972:         ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
                    973:         ahc->poly_accum[i] = 1;  /* Our polyhash prepends a non-zero word */
                    974:     }
1.13      djm       975:
1.1       pvalchev  976:     /* Setup L3-1 hash variables */
                    977:     kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
                    978:     for (i = 0; i < STREAMS; i++)
                    979:           memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
                    980:                                                  4*sizeof(UINT64));
1.14      djm       981:     endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),
1.1       pvalchev  982:                                                   sizeof(ahc->ip_keys));
                    983:     for (i = 0; i < STREAMS*4; i++)
                    984:         ahc->ip_keys[i] %= p36;  /* Bring into Z_p36 */
1.13      djm       985:
1.1       pvalchev  986:     /* Setup L3-2 hash variables    */
                    987:     /* Fill buffer with index 4 key */
                    988:     kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
                    989:     endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),
                    990:                          STREAMS * sizeof(UINT32));
1.12      markus    991:     explicit_bzero(buf, sizeof(buf));
1.1       pvalchev  992: }
                    993:
                    994: /* ---------------------------------------------------------------------- */
                    995:
                    996: #if 0
                    997: static uhash_ctx_t uhash_alloc(u_char key[])
                    998: {
                    999: /* Allocate memory and force to a 16-byte boundary. */
                   1000:     uhash_ctx_t ctx;
                   1001:     u_char bytes_to_add;
                   1002:     aes_int_key prf_key;
1.13      djm      1003:
1.1       pvalchev 1004:     ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
                   1005:     if (ctx) {
                   1006:         if (ALLOC_BOUNDARY) {
                   1007:             bytes_to_add = ALLOC_BOUNDARY -
                   1008:                               ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1));
                   1009:             ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add);
                   1010:             *((u_char *)ctx - 1) = bytes_to_add;
                   1011:         }
                   1012:         aes_key_setup(key,prf_key);
                   1013:         uhash_init(ctx, prf_key);
                   1014:     }
                   1015:     return (ctx);
                   1016: }
                   1017: #endif
                   1018:
                   1019: /* ---------------------------------------------------------------------- */
                   1020:
                   1021: #if 0
                   1022: static int uhash_free(uhash_ctx_t ctx)
                   1023: {
                   1024: /* Free memory allocated by uhash_alloc */
                   1025:     u_char bytes_to_sub;
1.13      djm      1026:
1.1       pvalchev 1027:     if (ctx) {
                   1028:         if (ALLOC_BOUNDARY) {
                   1029:             bytes_to_sub = *((u_char *)ctx - 1);
                   1030:             ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub);
                   1031:         }
                   1032:         free(ctx);
                   1033:     }
                   1034:     return (1);
                   1035: }
                   1036: #endif
                   1037: /* ---------------------------------------------------------------------- */
                   1038:
1.7       djm      1039: static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len)
1.1       pvalchev 1040: /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
                   1041:  * hash each one with NH, calling the polyhash on each NH output.
                   1042:  */
                   1043: {
                   1044:     UWORD bytes_hashed, bytes_remaining;
1.3       pvalchev 1045:     UINT64 result_buf[STREAMS];
                   1046:     UINT8 *nh_result = (UINT8 *)&result_buf;
1.13      djm      1047:
1.1       pvalchev 1048:     if (ctx->msg_len + len <= L1_KEY_LEN) {
1.7       djm      1049:         nh_update(&ctx->hash, (const UINT8 *)input, len);
1.1       pvalchev 1050:         ctx->msg_len += len;
                   1051:     } else {
1.13      djm      1052:
1.1       pvalchev 1053:          bytes_hashed = ctx->msg_len % L1_KEY_LEN;
                   1054:          if (ctx->msg_len == L1_KEY_LEN)
                   1055:              bytes_hashed = L1_KEY_LEN;
                   1056:
                   1057:          if (bytes_hashed + len >= L1_KEY_LEN) {
                   1058:
                   1059:              /* If some bytes have been passed to the hash function      */
                   1060:              /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
                   1061:              /* bytes to complete the current nh_block.                  */
                   1062:              if (bytes_hashed) {
                   1063:                  bytes_remaining = (L1_KEY_LEN - bytes_hashed);
1.7       djm      1064:                  nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining);
1.1       pvalchev 1065:                  nh_final(&ctx->hash, nh_result);
                   1066:                  ctx->msg_len += bytes_remaining;
                   1067:                  poly_hash(ctx,(UINT32 *)nh_result);
                   1068:                  len -= bytes_remaining;
                   1069:                  input += bytes_remaining;
                   1070:              }
                   1071:
                   1072:              /* Hash directly from input stream if enough bytes */
                   1073:              while (len >= L1_KEY_LEN) {
1.7       djm      1074:                  nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN,
1.1       pvalchev 1075:                                    L1_KEY_LEN, nh_result);
                   1076:                  ctx->msg_len += L1_KEY_LEN;
                   1077:                  len -= L1_KEY_LEN;
                   1078:                  input += L1_KEY_LEN;
                   1079:                  poly_hash(ctx,(UINT32 *)nh_result);
                   1080:              }
                   1081:          }
                   1082:
                   1083:          /* pass remaining < L1_KEY_LEN bytes of input data to NH */
                   1084:          if (len) {
1.7       djm      1085:              nh_update(&ctx->hash, (const UINT8 *)input, len);
1.1       pvalchev 1086:              ctx->msg_len += len;
                   1087:          }
                   1088:      }
                   1089:
                   1090:     return (1);
                   1091: }
                   1092:
                   1093: /* ---------------------------------------------------------------------- */
                   1094:
                   1095: static int uhash_final(uhash_ctx_t ctx, u_char *res)
                   1096: /* Incorporate any pending data, pad, and generate tag */
                   1097: {
1.3       pvalchev 1098:     UINT64 result_buf[STREAMS];
                   1099:     UINT8 *nh_result = (UINT8 *)&result_buf;
1.1       pvalchev 1100:
                   1101:     if (ctx->msg_len > L1_KEY_LEN) {
                   1102:         if (ctx->msg_len % L1_KEY_LEN) {
                   1103:             nh_final(&ctx->hash, nh_result);
                   1104:             poly_hash(ctx,(UINT32 *)nh_result);
                   1105:         }
                   1106:         ip_long(ctx, res);
                   1107:     } else {
                   1108:         nh_final(&ctx->hash, nh_result);
                   1109:         ip_short(ctx,nh_result, res);
                   1110:     }
                   1111:     uhash_reset(ctx);
                   1112:     return (1);
                   1113: }
                   1114:
                   1115: /* ---------------------------------------------------------------------- */
                   1116:
                   1117: #if 0
                   1118: static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
                   1119: /* assumes that msg is in a writable buffer of length divisible by */
                   1120: /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed.           */
                   1121: {
                   1122:     UINT8 nh_result[STREAMS*sizeof(UINT64)];
                   1123:     UINT32 nh_len;
                   1124:     int extra_zeroes_needed;
1.13      djm      1125:
1.1       pvalchev 1126:     /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
                   1127:      * the polyhash.
                   1128:      */
                   1129:     if (len <= L1_KEY_LEN) {
1.15    ! djm      1130:        if (len == 0)                  /* If zero length messages will not */
        !          1131:                nh_len = L1_PAD_BOUNDARY;  /* be seen, comment out this case   */
        !          1132:        else
        !          1133:                nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1.1       pvalchev 1134:         extra_zeroes_needed = nh_len - len;
                   1135:         zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
                   1136:         nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
                   1137:         ip_short(ahc,nh_result, res);
                   1138:     } else {
                   1139:         /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
                   1140:          * output to poly_hash().
                   1141:          */
                   1142:         do {
                   1143:             nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result);
                   1144:             poly_hash(ahc,(UINT32 *)nh_result);
                   1145:             len -= L1_KEY_LEN;
                   1146:             msg += L1_KEY_LEN;
                   1147:         } while (len >= L1_KEY_LEN);
                   1148:         if (len) {
                   1149:             nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
                   1150:             extra_zeroes_needed = nh_len - len;
                   1151:             zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
                   1152:             nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
                   1153:             poly_hash(ahc,(UINT32 *)nh_result);
                   1154:         }
                   1155:
                   1156:         ip_long(ahc, res);
                   1157:     }
1.13      djm      1158:
1.1       pvalchev 1159:     uhash_reset(ahc);
                   1160:     return 1;
                   1161: }
                   1162: #endif
                   1163:
                   1164: /* ---------------------------------------------------------------------- */
                   1165: /* ---------------------------------------------------------------------- */
                   1166: /* ----- Begin UMAC Section --------------------------------------------- */
                   1167: /* ---------------------------------------------------------------------- */
                   1168: /* ---------------------------------------------------------------------- */
                   1169:
                   1170: /* The UMAC interface has two interfaces, an all-at-once interface where
                   1171:  * the entire message to be authenticated is passed to UMAC in one buffer,
1.14      djm      1172:  * and a sequential interface where the message is presented a little at a
1.1       pvalchev 1173:  * time. The all-at-once is more optimaized than the sequential version and
1.14      djm      1174:  * should be preferred when the sequential interface is not required.
1.1       pvalchev 1175:  */
                   1176: struct umac_ctx {
                   1177:     uhash_ctx hash;          /* Hash function for message compression    */
                   1178:     pdf_ctx pdf;             /* PDF for hashed output                    */
                   1179:     void *free_ptr;          /* Address to free this struct via          */
                   1180: } umac_ctx;
                   1181:
                   1182: /* ---------------------------------------------------------------------- */
                   1183:
                   1184: #if 0
                   1185: int umac_reset(struct umac_ctx *ctx)
                   1186: /* Reset the hash function to begin a new authentication.        */
                   1187: {
                   1188:     uhash_reset(&ctx->hash);
                   1189:     return (1);
                   1190: }
                   1191: #endif
                   1192:
                   1193: /* ---------------------------------------------------------------------- */
                   1194:
                   1195: int umac_delete(struct umac_ctx *ctx)
                   1196: /* Deallocate the ctx structure */
                   1197: {
                   1198:     if (ctx) {
                   1199:         if (ALLOC_BOUNDARY)
                   1200:             ctx = (struct umac_ctx *)ctx->free_ptr;
1.12      markus   1201:         explicit_bzero(ctx, sizeof(*ctx) + ALLOC_BOUNDARY);
1.5       djm      1202:         free(ctx);
1.1       pvalchev 1203:     }
                   1204:     return (1);
                   1205: }
                   1206:
                   1207: /* ---------------------------------------------------------------------- */
                   1208:
1.7       djm      1209: struct umac_ctx *umac_new(const u_char key[])
1.14      djm      1210: /* Dynamically allocate a umac_ctx struct, initialize variables,
1.1       pvalchev 1211:  * generate subkeys from key. Align to 16-byte boundary.
                   1212:  */
                   1213: {
                   1214:     struct umac_ctx *ctx, *octx;
                   1215:     size_t bytes_to_add;
                   1216:     aes_int_key prf_key;
1.13      djm      1217:
1.8       djm      1218:     octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY);
1.1       pvalchev 1219:     if (ctx) {
                   1220:         if (ALLOC_BOUNDARY) {
                   1221:             bytes_to_add = ALLOC_BOUNDARY -
                   1222:                               ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1));
                   1223:             ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add);
                   1224:         }
                   1225:         ctx->free_ptr = octx;
1.7       djm      1226:         aes_key_setup(key, prf_key);
1.1       pvalchev 1227:         pdf_init(&ctx->pdf, prf_key);
                   1228:         uhash_init(&ctx->hash, prf_key);
1.12      markus   1229:         explicit_bzero(prf_key, sizeof(prf_key));
1.1       pvalchev 1230:     }
1.13      djm      1231:
1.1       pvalchev 1232:     return (ctx);
                   1233: }
                   1234:
                   1235: /* ---------------------------------------------------------------------- */
                   1236:
1.7       djm      1237: int umac_final(struct umac_ctx *ctx, u_char tag[], const u_char nonce[8])
1.1       pvalchev 1238: /* Incorporate any pending data, pad, and generate tag */
                   1239: {
                   1240:     uhash_final(&ctx->hash, (u_char *)tag);
1.7       djm      1241:     pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag);
1.13      djm      1242:
1.1       pvalchev 1243:     return (1);
                   1244: }
                   1245:
                   1246: /* ---------------------------------------------------------------------- */
                   1247:
1.7       djm      1248: int umac_update(struct umac_ctx *ctx, const u_char *input, long len)
1.1       pvalchev 1249: /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and   */
                   1250: /* hash each one, calling the PDF on the hashed output whenever the hash- */
                   1251: /* output buffer is full.                                                 */
                   1252: {
                   1253:     uhash_update(&ctx->hash, input, len);
                   1254:     return (1);
                   1255: }
                   1256:
                   1257: /* ---------------------------------------------------------------------- */
                   1258:
                   1259: #if 0
1.14      djm      1260: int umac(struct umac_ctx *ctx, u_char *input,
1.1       pvalchev 1261:          long len, u_char tag[],
                   1262:          u_char nonce[8])
                   1263: /* All-in-one version simply calls umac_update() and umac_final().        */
                   1264: {
                   1265:     uhash(&ctx->hash, input, len, (u_char *)tag);
                   1266:     pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1.13      djm      1267:
1.1       pvalchev 1268:     return (1);
                   1269: }
                   1270: #endif
                   1271:
                   1272: /* ---------------------------------------------------------------------- */
                   1273: /* ---------------------------------------------------------------------- */
                   1274: /* ----- End UMAC Section ----------------------------------------------- */
                   1275: /* ---------------------------------------------------------------------- */
                   1276: /* ---------------------------------------------------------------------- */