[BACK]Return to umac.c CVS log [TXT][DIR] Up to [local] / src / usr.bin / ssh

Annotation of src/usr.bin/ssh/umac.c, Revision 1.22

1.22    ! jsg         1: /* $OpenBSD: umac.c,v 1.21 2021/04/03 06:58:30 djm Exp $ */
1.1       pvalchev    2: /* -----------------------------------------------------------------------
1.14      djm         3:  *
1.1       pvalchev    4:  * umac.c -- C Implementation UMAC Message Authentication
                      5:  *
                      6:  * Version 0.93b of rfc4418.txt -- 2006 July 18
                      7:  *
                      8:  * For a full description of UMAC message authentication see the UMAC
                      9:  * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
                     10:  * Please report bugs and suggestions to the UMAC webpage.
                     11:  *
                     12:  * Copyright (c) 1999-2006 Ted Krovetz
1.14      djm        13:  *
1.1       pvalchev   14:  * Permission to use, copy, modify, and distribute this software and
                     15:  * its documentation for any purpose and with or without fee, is hereby
                     16:  * granted provided that the above copyright notice appears in all copies
                     17:  * and in supporting documentation, and that the name of the copyright
                     18:  * holder not be used in advertising or publicity pertaining to
                     19:  * distribution of the software without specific, written prior permission.
                     20:  *
1.14      djm        21:  * Comments should be directed to Ted Krovetz (tdk@acm.org)
                     22:  *
1.1       pvalchev   23:  * ---------------------------------------------------------------------- */
1.13      djm        24:
1.1       pvalchev   25:  /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
                     26:   *
                     27:   * 1) This version does not work properly on messages larger than 16MB
                     28:   *
                     29:   * 2) If you set the switch to use SSE2, then all data must be 16-byte
                     30:   *    aligned
                     31:   *
                     32:   * 3) When calling the function umac(), it is assumed that msg is in
                     33:   * a writable buffer of length divisible by 32 bytes. The message itself
                     34:   * does not have to fill the entire buffer, but bytes beyond msg may be
                     35:   * zeroed.
                     36:   *
                     37:   * 4) Three free AES implementations are supported by this implementation of
                     38:   * UMAC. Paulo Barreto's version is in the public domain and can be found
                     39:   * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
                     40:   * "Barreto"). The only two files needed are rijndael-alg-fst.c and
                     41:   * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
1.20      djm        42:   * Public license at http://fp.gladman.plus.com/AES/index.htm. It
1.1       pvalchev   43:   * includes a fast IA-32 assembly version. The OpenSSL crypo library is
                     44:   * the third.
                     45:   *
                     46:   * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
                     47:   * produced under gcc with optimizations set -O3 or higher. Dunno why.
                     48:   *
                     49:   /////////////////////////////////////////////////////////////////////// */
1.13      djm        50:
1.1       pvalchev   51: /* ---------------------------------------------------------------------- */
                     52: /* --- User Switches ---------------------------------------------------- */
                     53: /* ---------------------------------------------------------------------- */
                     54:
1.16      naddy      55: #ifndef UMAC_OUTPUT_LEN
1.1       pvalchev   56: #define UMAC_OUTPUT_LEN     8  /* Alowable: 4, 8, 12, 16                  */
1.16      naddy      57: #endif
1.1       pvalchev   58: /* #define FORCE_C_ONLY        1  ANSI C and 64-bit integers req'd        */
                     59: /* #define AES_IMPLEMENTAION   1  1 = OpenSSL, 2 = Barreto, 3 = Gladman   */
                     60: /* #define SSE2                0  Is SSE2 is available?                   */
                     61: /* #define RUN_TESTS           0  Run basic correctness/speed tests       */
1.17      djm        62: /* #define UMAC_AE_SUPPORT     0  Enable authenticated encryption         */
1.1       pvalchev   63:
                     64: /* ---------------------------------------------------------------------- */
                     65: /* -- Global Includes --------------------------------------------------- */
                     66: /* ---------------------------------------------------------------------- */
                     67:
                     68: #include <sys/types.h>
1.11      guenther   69: #include <endian.h>
1.9       djm        70: #include <string.h>
1.18      deraadt    71: #include <stdarg.h>
1.9       djm        72: #include <stdio.h>
                     73: #include <stdlib.h>
                     74: #include <stddef.h>
1.1       pvalchev   75:
1.2       stevesk    76: #include "xmalloc.h"
1.1       pvalchev   77: #include "umac.h"
1.9       djm        78: #include "misc.h"
1.1       pvalchev   79:
                     80: /* ---------------------------------------------------------------------- */
                     81: /* --- Primitive Data Types ---                                           */
                     82: /* ---------------------------------------------------------------------- */
                     83:
                     84: /* The following assumptions may need change on your system */
                     85: typedef u_int8_t       UINT8;  /* 1 byte   */
                     86: typedef u_int16_t      UINT16; /* 2 byte   */
                     87: typedef u_int32_t      UINT32; /* 4 byte   */
                     88: typedef u_int64_t      UINT64; /* 8 bytes  */
                     89: typedef unsigned int   UWORD;  /* Register */
                     90:
                     91: /* ---------------------------------------------------------------------- */
                     92: /* --- Constants -------------------------------------------------------- */
                     93: /* ---------------------------------------------------------------------- */
                     94:
                     95: #define UMAC_KEY_LEN           16  /* UMAC takes 16 bytes of external key */
                     96:
                     97: /* Message "words" are read from memory in an endian-specific manner.     */
                     98: /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must    */
                     99: /* be set true if the host computer is little-endian.                     */
                    100:
                    101: #if BYTE_ORDER == LITTLE_ENDIAN
                    102: #define __LITTLE_ENDIAN__ 1
                    103: #else
                    104: #define __LITTLE_ENDIAN__ 0
                    105: #endif
                    106:
                    107: /* ---------------------------------------------------------------------- */
                    108: /* ---------------------------------------------------------------------- */
                    109: /* ----- Architecture Specific ------------------------------------------ */
                    110: /* ---------------------------------------------------------------------- */
                    111: /* ---------------------------------------------------------------------- */
                    112:
                    113:
                    114: /* ---------------------------------------------------------------------- */
                    115: /* ---------------------------------------------------------------------- */
                    116: /* ----- Primitive Routines --------------------------------------------- */
                    117: /* ---------------------------------------------------------------------- */
                    118: /* ---------------------------------------------------------------------- */
                    119:
                    120:
                    121: /* ---------------------------------------------------------------------- */
                    122: /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
                    123: /* ---------------------------------------------------------------------- */
                    124:
                    125: #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
                    126:
                    127: /* ---------------------------------------------------------------------- */
                    128: /* --- Endian Conversion --- Forcing assembly on some platforms           */
                    129: /* ---------------------------------------------------------------------- */
                    130:
                    131: /* The following definitions use the above reversal-primitives to do the right
                    132:  * thing on endian specific load and stores.
                    133:  */
                    134:
1.9       djm       135: #if BYTE_ORDER == LITTLE_ENDIAN
                    136: #define LOAD_UINT32_REVERSED(p)                get_u32(p)
1.15      djm       137: #define STORE_UINT32_REVERSED(p,v)     put_u32(p,v)
1.1       pvalchev  138: #else
1.9       djm       139: #define LOAD_UINT32_REVERSED(p)                get_u32_le(p)
1.15      djm       140: #define STORE_UINT32_REVERSED(p,v)     put_u32_le(p,v)
1.1       pvalchev  141: #endif
1.9       djm       142:
                    143: #define LOAD_UINT32_LITTLE(p)           (get_u32_le(p))
                    144: #define STORE_UINT32_BIG(p,v)           put_u32(p, v)
1.1       pvalchev  145:
                    146:
                    147:
                    148: /* ---------------------------------------------------------------------- */
                    149: /* ---------------------------------------------------------------------- */
                    150: /* ----- Begin KDF & PDF Section ---------------------------------------- */
                    151: /* ---------------------------------------------------------------------- */
                    152: /* ---------------------------------------------------------------------- */
                    153:
                    154: /* UMAC uses AES with 16 byte block and key lengths */
                    155: #define AES_BLOCK_LEN  16
                    156:
1.10      naddy     157: #ifdef WITH_OPENSSL
1.1       pvalchev  158: #include <openssl/aes.h>
                    159: typedef AES_KEY aes_int_key[1];
                    160: #define aes_encryption(in,out,int_key)                  \
                    161:   AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
                    162: #define aes_key_setup(key,int_key)                      \
1.7       djm       163:   AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN*8,int_key)
1.10      naddy     164: #else
                    165: #include "rijndael.h"
                    166: #define AES_ROUNDS ((UMAC_KEY_LEN / 4) + 6)
                    167: typedef UINT8 aes_int_key[AES_ROUNDS+1][4][4]; /* AES internal */
                    168: #define aes_encryption(in,out,int_key) \
                    169:   rijndaelEncrypt((u32 *)(int_key), AES_ROUNDS, (u8 *)(in), (u8 *)(out))
                    170: #define aes_key_setup(key,int_key) \
                    171:   rijndaelKeySetupEnc((u32 *)(int_key), (const unsigned char *)(key), \
                    172:   UMAC_KEY_LEN*8)
                    173: #endif
1.1       pvalchev  174:
                    175: /* The user-supplied UMAC key is stretched using AES in a counter
                    176:  * mode to supply all random bits needed by UMAC. The kdf function takes
                    177:  * an AES internal key representation 'key' and writes a stream of
                    178:  * 'nbytes' bytes to the memory pointed at by 'buffer_ptr'. Each distinct
                    179:  * 'ndx' causes a distinct byte stream.
                    180:  */
                    181: static void kdf(void *buffer_ptr, aes_int_key key, UINT8 ndx, int nbytes)
                    182: {
                    183:     UINT8 in_buf[AES_BLOCK_LEN] = {0};
                    184:     UINT8 out_buf[AES_BLOCK_LEN];
                    185:     UINT8 *dst_buf = (UINT8 *)buffer_ptr;
                    186:     int i;
1.13      djm       187:
1.1       pvalchev  188:     /* Setup the initial value */
                    189:     in_buf[AES_BLOCK_LEN-9] = ndx;
                    190:     in_buf[AES_BLOCK_LEN-1] = i = 1;
1.13      djm       191:
1.1       pvalchev  192:     while (nbytes >= AES_BLOCK_LEN) {
                    193:         aes_encryption(in_buf, out_buf, key);
                    194:         memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
                    195:         in_buf[AES_BLOCK_LEN-1] = ++i;
                    196:         nbytes -= AES_BLOCK_LEN;
                    197:         dst_buf += AES_BLOCK_LEN;
                    198:     }
                    199:     if (nbytes) {
                    200:         aes_encryption(in_buf, out_buf, key);
                    201:         memcpy(dst_buf,out_buf,nbytes);
                    202:     }
1.12      markus    203:     explicit_bzero(in_buf, sizeof(in_buf));
                    204:     explicit_bzero(out_buf, sizeof(out_buf));
1.1       pvalchev  205: }
                    206:
                    207: /* The final UHASH result is XOR'd with the output of a pseudorandom
1.14      djm       208:  * function. Here, we use AES to generate random output and
1.1       pvalchev  209:  * xor the appropriate bytes depending on the last bits of nonce.
                    210:  * This scheme is optimized for sequential, increasing big-endian nonces.
                    211:  */
                    212:
                    213: typedef struct {
                    214:     UINT8 cache[AES_BLOCK_LEN];  /* Previous AES output is saved      */
                    215:     UINT8 nonce[AES_BLOCK_LEN];  /* The AES input making above cache  */
                    216:     aes_int_key prf_key;         /* Expanded AES key for PDF          */
                    217: } pdf_ctx;
                    218:
                    219: static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
                    220: {
                    221:     UINT8 buf[UMAC_KEY_LEN];
1.13      djm       222:
1.1       pvalchev  223:     kdf(buf, prf_key, 0, UMAC_KEY_LEN);
                    224:     aes_key_setup(buf, pc->prf_key);
1.13      djm       225:
1.1       pvalchev  226:     /* Initialize pdf and cache */
                    227:     memset(pc->nonce, 0, sizeof(pc->nonce));
                    228:     aes_encryption(pc->nonce, pc->cache, pc->prf_key);
1.12      markus    229:     explicit_bzero(buf, sizeof(buf));
1.1       pvalchev  230: }
                    231:
1.7       djm       232: static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], UINT8 buf[8])
1.1       pvalchev  233: {
                    234:     /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
                    235:      * of the AES output. If last time around we returned the ndx-1st
                    236:      * element, then we may have the result in the cache already.
                    237:      */
1.13      djm       238:
1.1       pvalchev  239: #if (UMAC_OUTPUT_LEN == 4)
                    240: #define LOW_BIT_MASK 3
                    241: #elif (UMAC_OUTPUT_LEN == 8)
                    242: #define LOW_BIT_MASK 1
                    243: #elif (UMAC_OUTPUT_LEN > 8)
                    244: #define LOW_BIT_MASK 0
                    245: #endif
1.6       djm       246:     union {
                    247:         UINT8 tmp_nonce_lo[4];
                    248:         UINT32 align;
                    249:     } t;
1.1       pvalchev  250: #if LOW_BIT_MASK != 0
                    251:     int ndx = nonce[7] & LOW_BIT_MASK;
                    252: #endif
1.7       djm       253:     *(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1];
1.6       djm       254:     t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
1.13      djm       255:
1.6       djm       256:     if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) ||
1.7       djm       257:          (((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) )
1.1       pvalchev  258:     {
1.7       djm       259:         ((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0];
1.6       djm       260:         ((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0];
1.1       pvalchev  261:         aes_encryption(pc->nonce, pc->cache, pc->prf_key);
                    262:     }
1.13      djm       263:
1.1       pvalchev  264: #if (UMAC_OUTPUT_LEN == 4)
                    265:     *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx];
                    266: #elif (UMAC_OUTPUT_LEN == 8)
                    267:     *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx];
                    268: #elif (UMAC_OUTPUT_LEN == 12)
                    269:     ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
                    270:     ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2];
                    271: #elif (UMAC_OUTPUT_LEN == 16)
                    272:     ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
                    273:     ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1];
                    274: #endif
                    275: }
                    276:
                    277: /* ---------------------------------------------------------------------- */
                    278: /* ---------------------------------------------------------------------- */
                    279: /* ----- Begin NH Hash Section ------------------------------------------ */
                    280: /* ---------------------------------------------------------------------- */
                    281: /* ---------------------------------------------------------------------- */
                    282:
                    283: /* The NH-based hash functions used in UMAC are described in the UMAC paper
1.14      djm       284:  * and specification, both of which can be found at the UMAC website.
                    285:  * The interface to this implementation has two
1.1       pvalchev  286:  * versions, one expects the entire message being hashed to be passed
                    287:  * in a single buffer and returns the hash result immediately. The second
1.14      djm       288:  * allows the message to be passed in a sequence of buffers. In the
1.21      djm       289:  * multiple-buffer interface, the client calls the routine nh_update() as
1.14      djm       290:  * many times as necessary. When there is no more data to be fed to the
                    291:  * hash, the client calls nh_final() which calculates the hash output.
                    292:  * Before beginning another hash calculation the nh_reset() routine
                    293:  * must be called. The single-buffer routine, nh(), is equivalent to
                    294:  * the sequence of calls nh_update() and nh_final(); however it is
1.17      djm       295:  * optimized and should be preferred whenever the multiple-buffer interface
1.14      djm       296:  * is not necessary. When using either interface, it is the client's
1.17      djm       297:  * responsibility to pass no more than L1_KEY_LEN bytes per hash result.
1.14      djm       298:  *
                    299:  * The routine nh_init() initializes the nh_ctx data structure and
                    300:  * must be called once, before any other PDF routine.
1.1       pvalchev  301:  */
1.13      djm       302:
1.1       pvalchev  303:  /* The "nh_aux" routines do the actual NH hashing work. They
                    304:   * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
1.14      djm       305:   * produce output for all STREAMS NH iterations in one call,
1.1       pvalchev  306:   * allowing the parallel implementation of the streams.
                    307:   */
                    308:
                    309: #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied  */
                    310: #define L1_KEY_LEN         1024     /* Internal key bytes                 */
                    311: #define L1_KEY_SHIFT         16     /* Toeplitz key shift between streams */
                    312: #define L1_PAD_BOUNDARY      32     /* pad message to boundary multiple   */
                    313: #define ALLOC_BOUNDARY       16     /* Keep buffers aligned to this       */
                    314: #define HASH_BUF_BYTES       64     /* nh_aux_hb buffer multiple          */
                    315:
                    316: typedef struct {
                    317:     UINT8  nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */
1.4       djm       318:     UINT8  data   [HASH_BUF_BYTES];    /* Incoming data buffer           */
1.17      djm       319:     int next_data_empty;    /* Bookkeeping variable for data buffer.     */
                    320:     int bytes_hashed;       /* Bytes (out of L1_KEY_LEN) incorporated.   */
1.1       pvalchev  321:     UINT64 state[STREAMS];               /* on-line state     */
                    322: } nh_ctx;
                    323:
                    324:
                    325: #if (UMAC_OUTPUT_LEN == 4)
                    326:
1.7       djm       327: static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
1.14      djm       328: /* NH hashing primitive. Previous (partial) hash result is loaded and
1.1       pvalchev  329: * then stored via hp pointer. The length of the data pointed at by "dp",
                    330: * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32).  Key
1.14      djm       331: * is expected to be endian compensated in memory at key setup.
1.1       pvalchev  332: */
                    333: {
                    334:     UINT64 h;
                    335:     UWORD c = dlen / 32;
                    336:     UINT32 *k = (UINT32 *)kp;
1.7       djm       337:     const UINT32 *d = (const UINT32 *)dp;
1.1       pvalchev  338:     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
                    339:     UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
1.13      djm       340:
1.1       pvalchev  341:     h = *((UINT64 *)hp);
                    342:     do {
                    343:         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
                    344:         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
                    345:         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
                    346:         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
                    347:         k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
                    348:         k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
                    349:         h += MUL64((k0 + d0), (k4 + d4));
                    350:         h += MUL64((k1 + d1), (k5 + d5));
                    351:         h += MUL64((k2 + d2), (k6 + d6));
                    352:         h += MUL64((k3 + d3), (k7 + d7));
1.13      djm       353:
1.1       pvalchev  354:         d += 8;
                    355:         k += 8;
                    356:     } while (--c);
                    357:   *((UINT64 *)hp) = h;
                    358: }
                    359:
                    360: #elif (UMAC_OUTPUT_LEN == 8)
                    361:
1.7       djm       362: static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
1.1       pvalchev  363: /* Same as previous nh_aux, but two streams are handled in one pass,
                    364:  * reading and writing 16 bytes of hash-state per call.
                    365:  */
                    366: {
                    367:   UINT64 h1,h2;
                    368:   UWORD c = dlen / 32;
                    369:   UINT32 *k = (UINT32 *)kp;
1.7       djm       370:   const UINT32 *d = (const UINT32 *)dp;
1.1       pvalchev  371:   UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
                    372:   UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
                    373:         k8,k9,k10,k11;
                    374:
                    375:   h1 = *((UINT64 *)hp);
                    376:   h2 = *((UINT64 *)hp + 1);
                    377:   k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
                    378:   do {
                    379:     d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
                    380:     d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
                    381:     d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
                    382:     d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
                    383:     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
                    384:     k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
                    385:
                    386:     h1 += MUL64((k0 + d0), (k4 + d4));
                    387:     h2 += MUL64((k4 + d0), (k8 + d4));
                    388:
                    389:     h1 += MUL64((k1 + d1), (k5 + d5));
                    390:     h2 += MUL64((k5 + d1), (k9 + d5));
                    391:
                    392:     h1 += MUL64((k2 + d2), (k6 + d6));
                    393:     h2 += MUL64((k6 + d2), (k10 + d6));
                    394:
                    395:     h1 += MUL64((k3 + d3), (k7 + d7));
                    396:     h2 += MUL64((k7 + d3), (k11 + d7));
                    397:
                    398:     k0 = k8; k1 = k9; k2 = k10; k3 = k11;
                    399:
                    400:     d += 8;
                    401:     k += 8;
                    402:   } while (--c);
                    403:   ((UINT64 *)hp)[0] = h1;
                    404:   ((UINT64 *)hp)[1] = h2;
                    405: }
                    406:
                    407: #elif (UMAC_OUTPUT_LEN == 12)
                    408:
1.7       djm       409: static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
1.1       pvalchev  410: /* Same as previous nh_aux, but two streams are handled in one pass,
                    411:  * reading and writing 24 bytes of hash-state per call.
                    412: */
                    413: {
                    414:     UINT64 h1,h2,h3;
                    415:     UWORD c = dlen / 32;
                    416:     UINT32 *k = (UINT32 *)kp;
1.7       djm       417:     const UINT32 *d = (const UINT32 *)dp;
1.1       pvalchev  418:     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
                    419:     UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
                    420:         k8,k9,k10,k11,k12,k13,k14,k15;
1.13      djm       421:
1.1       pvalchev  422:     h1 = *((UINT64 *)hp);
                    423:     h2 = *((UINT64 *)hp + 1);
                    424:     h3 = *((UINT64 *)hp + 2);
                    425:     k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
                    426:     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
                    427:     do {
                    428:         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
                    429:         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
                    430:         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
                    431:         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
                    432:         k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
                    433:         k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
1.13      djm       434:
1.1       pvalchev  435:         h1 += MUL64((k0 + d0), (k4 + d4));
                    436:         h2 += MUL64((k4 + d0), (k8 + d4));
                    437:         h3 += MUL64((k8 + d0), (k12 + d4));
1.13      djm       438:
1.1       pvalchev  439:         h1 += MUL64((k1 + d1), (k5 + d5));
                    440:         h2 += MUL64((k5 + d1), (k9 + d5));
                    441:         h3 += MUL64((k9 + d1), (k13 + d5));
1.13      djm       442:
1.1       pvalchev  443:         h1 += MUL64((k2 + d2), (k6 + d6));
                    444:         h2 += MUL64((k6 + d2), (k10 + d6));
                    445:         h3 += MUL64((k10 + d2), (k14 + d6));
1.13      djm       446:
1.1       pvalchev  447:         h1 += MUL64((k3 + d3), (k7 + d7));
                    448:         h2 += MUL64((k7 + d3), (k11 + d7));
                    449:         h3 += MUL64((k11 + d3), (k15 + d7));
1.13      djm       450:
1.1       pvalchev  451:         k0 = k8; k1 = k9; k2 = k10; k3 = k11;
                    452:         k4 = k12; k5 = k13; k6 = k14; k7 = k15;
1.13      djm       453:
1.1       pvalchev  454:         d += 8;
                    455:         k += 8;
                    456:     } while (--c);
                    457:     ((UINT64 *)hp)[0] = h1;
                    458:     ((UINT64 *)hp)[1] = h2;
                    459:     ((UINT64 *)hp)[2] = h3;
                    460: }
                    461:
                    462: #elif (UMAC_OUTPUT_LEN == 16)
                    463:
1.7       djm       464: static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
1.1       pvalchev  465: /* Same as previous nh_aux, but two streams are handled in one pass,
                    466:  * reading and writing 24 bytes of hash-state per call.
                    467: */
                    468: {
                    469:     UINT64 h1,h2,h3,h4;
                    470:     UWORD c = dlen / 32;
                    471:     UINT32 *k = (UINT32 *)kp;
1.7       djm       472:     const UINT32 *d = (const UINT32 *)dp;
1.1       pvalchev  473:     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
                    474:     UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
                    475:         k8,k9,k10,k11,k12,k13,k14,k15,
                    476:         k16,k17,k18,k19;
1.13      djm       477:
1.1       pvalchev  478:     h1 = *((UINT64 *)hp);
                    479:     h2 = *((UINT64 *)hp + 1);
                    480:     h3 = *((UINT64 *)hp + 2);
                    481:     h4 = *((UINT64 *)hp + 3);
                    482:     k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
                    483:     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
                    484:     do {
                    485:         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
                    486:         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
                    487:         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
                    488:         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
                    489:         k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
                    490:         k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
                    491:         k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
1.13      djm       492:
1.1       pvalchev  493:         h1 += MUL64((k0 + d0), (k4 + d4));
                    494:         h2 += MUL64((k4 + d0), (k8 + d4));
                    495:         h3 += MUL64((k8 + d0), (k12 + d4));
                    496:         h4 += MUL64((k12 + d0), (k16 + d4));
1.13      djm       497:
1.1       pvalchev  498:         h1 += MUL64((k1 + d1), (k5 + d5));
                    499:         h2 += MUL64((k5 + d1), (k9 + d5));
                    500:         h3 += MUL64((k9 + d1), (k13 + d5));
                    501:         h4 += MUL64((k13 + d1), (k17 + d5));
1.13      djm       502:
1.1       pvalchev  503:         h1 += MUL64((k2 + d2), (k6 + d6));
                    504:         h2 += MUL64((k6 + d2), (k10 + d6));
                    505:         h3 += MUL64((k10 + d2), (k14 + d6));
                    506:         h4 += MUL64((k14 + d2), (k18 + d6));
1.13      djm       507:
1.1       pvalchev  508:         h1 += MUL64((k3 + d3), (k7 + d7));
                    509:         h2 += MUL64((k7 + d3), (k11 + d7));
                    510:         h3 += MUL64((k11 + d3), (k15 + d7));
                    511:         h4 += MUL64((k15 + d3), (k19 + d7));
1.13      djm       512:
1.1       pvalchev  513:         k0 = k8; k1 = k9; k2 = k10; k3 = k11;
                    514:         k4 = k12; k5 = k13; k6 = k14; k7 = k15;
                    515:         k8 = k16; k9 = k17; k10 = k18; k11 = k19;
1.13      djm       516:
1.1       pvalchev  517:         d += 8;
                    518:         k += 8;
                    519:     } while (--c);
                    520:     ((UINT64 *)hp)[0] = h1;
                    521:     ((UINT64 *)hp)[1] = h2;
                    522:     ((UINT64 *)hp)[2] = h3;
                    523:     ((UINT64 *)hp)[3] = h4;
                    524: }
                    525:
                    526: /* ---------------------------------------------------------------------- */
                    527: #endif  /* UMAC_OUTPUT_LENGTH */
                    528: /* ---------------------------------------------------------------------- */
                    529:
                    530:
                    531: /* ---------------------------------------------------------------------- */
                    532:
1.7       djm       533: static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
1.1       pvalchev  534: /* This function is a wrapper for the primitive NH hash functions. It takes
                    535:  * as argument "hc" the current hash context and a buffer which must be a
                    536:  * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
                    537:  * appropriately according to how much message has been hashed already.
                    538:  */
                    539: {
                    540:     UINT8 *key;
1.13      djm       541:
1.1       pvalchev  542:     key = hc->nh_key + hc->bytes_hashed;
                    543:     nh_aux(key, buf, hc->state, nbytes);
                    544: }
                    545:
                    546: /* ---------------------------------------------------------------------- */
                    547:
1.12      markus    548: #if (__LITTLE_ENDIAN__)
1.1       pvalchev  549: static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)
                    550: /* We endian convert the keys on little-endian computers to               */
                    551: /* compensate for the lack of big-endian memory reads during hashing.     */
                    552: {
                    553:     UWORD iters = num_bytes / bpw;
                    554:     if (bpw == 4) {
                    555:         UINT32 *p = (UINT32 *)buf;
                    556:         do {
                    557:             *p = LOAD_UINT32_REVERSED(p);
                    558:             p++;
                    559:         } while (--iters);
                    560:     } else if (bpw == 8) {
                    561:         UINT32 *p = (UINT32 *)buf;
                    562:         UINT32 t;
                    563:         do {
                    564:             t = LOAD_UINT32_REVERSED(p+1);
                    565:             p[1] = LOAD_UINT32_REVERSED(p);
                    566:             p[0] = t;
                    567:             p += 2;
                    568:         } while (--iters);
                    569:     }
                    570: }
                    571: #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
                    572: #else
                    573: #define endian_convert_if_le(x,y,z) do{}while(0)  /* Do nothing */
                    574: #endif
                    575:
                    576: /* ---------------------------------------------------------------------- */
                    577:
                    578: static void nh_reset(nh_ctx *hc)
                    579: /* Reset nh_ctx to ready for hashing of new data */
                    580: {
                    581:     hc->bytes_hashed = 0;
                    582:     hc->next_data_empty = 0;
                    583:     hc->state[0] = 0;
                    584: #if (UMAC_OUTPUT_LEN >= 8)
                    585:     hc->state[1] = 0;
                    586: #endif
                    587: #if (UMAC_OUTPUT_LEN >= 12)
                    588:     hc->state[2] = 0;
                    589: #endif
                    590: #if (UMAC_OUTPUT_LEN == 16)
                    591:     hc->state[3] = 0;
                    592: #endif
                    593:
                    594: }
                    595:
                    596: /* ---------------------------------------------------------------------- */
                    597:
                    598: static void nh_init(nh_ctx *hc, aes_int_key prf_key)
                    599: /* Generate nh_key, endian convert and reset to be ready for hashing.   */
                    600: {
                    601:     kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));
                    602:     endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key));
                    603:     nh_reset(hc);
                    604: }
                    605:
                    606: /* ---------------------------------------------------------------------- */
                    607:
1.7       djm       608: static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
1.1       pvalchev  609: /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an    */
                    610: /* even multiple of HASH_BUF_BYTES.                                       */
                    611: {
                    612:     UINT32 i,j;
1.13      djm       613:
1.1       pvalchev  614:     j = hc->next_data_empty;
                    615:     if ((j + nbytes) >= HASH_BUF_BYTES) {
                    616:         if (j) {
                    617:             i = HASH_BUF_BYTES - j;
                    618:             memcpy(hc->data+j, buf, i);
                    619:             nh_transform(hc,hc->data,HASH_BUF_BYTES);
                    620:             nbytes -= i;
                    621:             buf += i;
                    622:             hc->bytes_hashed += HASH_BUF_BYTES;
                    623:         }
                    624:         if (nbytes >= HASH_BUF_BYTES) {
                    625:             i = nbytes & ~(HASH_BUF_BYTES - 1);
                    626:             nh_transform(hc, buf, i);
                    627:             nbytes -= i;
                    628:             buf += i;
                    629:             hc->bytes_hashed += i;
                    630:         }
                    631:         j = 0;
                    632:     }
                    633:     memcpy(hc->data + j, buf, nbytes);
                    634:     hc->next_data_empty = j + nbytes;
                    635: }
                    636:
                    637: /* ---------------------------------------------------------------------- */
                    638:
                    639: static void zero_pad(UINT8 *p, int nbytes)
                    640: {
                    641: /* Write "nbytes" of zeroes, beginning at "p" */
                    642:     if (nbytes >= (int)sizeof(UWORD)) {
                    643:         while ((ptrdiff_t)p % sizeof(UWORD)) {
                    644:             *p = 0;
                    645:             nbytes--;
                    646:             p++;
                    647:         }
                    648:         while (nbytes >= (int)sizeof(UWORD)) {
                    649:             *(UWORD *)p = 0;
                    650:             nbytes -= sizeof(UWORD);
                    651:             p += sizeof(UWORD);
                    652:         }
                    653:     }
                    654:     while (nbytes) {
                    655:         *p = 0;
                    656:         nbytes--;
                    657:         p++;
                    658:     }
                    659: }
                    660:
                    661: /* ---------------------------------------------------------------------- */
                    662:
                    663: static void nh_final(nh_ctx *hc, UINT8 *result)
                    664: /* After passing some number of data buffers to nh_update() for integration
                    665:  * into an NH context, nh_final is called to produce a hash result. If any
                    666:  * bytes are in the buffer hc->data, incorporate them into the
                    667:  * NH context. Finally, add into the NH accumulation "state" the total number
                    668:  * of bits hashed. The resulting numbers are written to the buffer "result".
                    669:  * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
                    670:  */
                    671: {
                    672:     int nh_len, nbits;
                    673:
                    674:     if (hc->next_data_empty != 0) {
                    675:         nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &
                    676:                                                 ~(L1_PAD_BOUNDARY - 1));
1.14      djm       677:         zero_pad(hc->data + hc->next_data_empty,
1.1       pvalchev  678:                                           nh_len - hc->next_data_empty);
                    679:         nh_transform(hc, hc->data, nh_len);
                    680:         hc->bytes_hashed += hc->next_data_empty;
                    681:     } else if (hc->bytes_hashed == 0) {
1.15      djm       682:        nh_len = L1_PAD_BOUNDARY;
1.1       pvalchev  683:         zero_pad(hc->data, L1_PAD_BOUNDARY);
                    684:         nh_transform(hc, hc->data, nh_len);
                    685:     }
                    686:
                    687:     nbits = (hc->bytes_hashed << 3);
                    688:     ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;
                    689: #if (UMAC_OUTPUT_LEN >= 8)
                    690:     ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;
                    691: #endif
                    692: #if (UMAC_OUTPUT_LEN >= 12)
                    693:     ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;
                    694: #endif
                    695: #if (UMAC_OUTPUT_LEN == 16)
                    696:     ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;
                    697: #endif
                    698:     nh_reset(hc);
                    699: }
                    700:
                    701: /* ---------------------------------------------------------------------- */
                    702:
1.7       djm       703: static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len,
1.1       pvalchev  704:                UINT32 unpadded_len, UINT8 *result)
                    705: /* All-in-one nh_update() and nh_final() equivalent.
                    706:  * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
                    707:  * well aligned
                    708:  */
                    709: {
                    710:     UINT32 nbits;
1.13      djm       711:
1.1       pvalchev  712:     /* Initialize the hash state */
                    713:     nbits = (unpadded_len << 3);
1.13      djm       714:
1.1       pvalchev  715:     ((UINT64 *)result)[0] = nbits;
                    716: #if (UMAC_OUTPUT_LEN >= 8)
                    717:     ((UINT64 *)result)[1] = nbits;
                    718: #endif
                    719: #if (UMAC_OUTPUT_LEN >= 12)
                    720:     ((UINT64 *)result)[2] = nbits;
                    721: #endif
                    722: #if (UMAC_OUTPUT_LEN == 16)
                    723:     ((UINT64 *)result)[3] = nbits;
                    724: #endif
1.13      djm       725:
1.1       pvalchev  726:     nh_aux(hc->nh_key, buf, result, padded_len);
                    727: }
                    728:
                    729: /* ---------------------------------------------------------------------- */
                    730: /* ---------------------------------------------------------------------- */
                    731: /* ----- Begin UHASH Section -------------------------------------------- */
                    732: /* ---------------------------------------------------------------------- */
                    733: /* ---------------------------------------------------------------------- */
                    734:
                    735: /* UHASH is a multi-layered algorithm. Data presented to UHASH is first
                    736:  * hashed by NH. The NH output is then hashed by a polynomial-hash layer
                    737:  * unless the initial data to be hashed is short. After the polynomial-
                    738:  * layer, an inner-product hash is used to produce the final UHASH output.
                    739:  *
                    740:  * UHASH provides two interfaces, one all-at-once and another where data
                    741:  * buffers are presented sequentially. In the sequential interface, the
                    742:  * UHASH client calls the routine uhash_update() as many times as necessary.
                    743:  * When there is no more data to be fed to UHASH, the client calls
1.14      djm       744:  * uhash_final() which
                    745:  * calculates the UHASH output. Before beginning another UHASH calculation
                    746:  * the uhash_reset() routine must be called. The all-at-once UHASH routine,
                    747:  * uhash(), is equivalent to the sequence of calls uhash_update() and
                    748:  * uhash_final(); however it is optimized and should be
                    749:  * used whenever the sequential interface is not necessary.
                    750:  *
                    751:  * The routine uhash_init() initializes the uhash_ctx data structure and
1.1       pvalchev  752:  * must be called once, before any other UHASH routine.
1.14      djm       753:  */
1.1       pvalchev  754:
                    755: /* ---------------------------------------------------------------------- */
                    756: /* ----- Constants and uhash_ctx ---------------------------------------- */
                    757: /* ---------------------------------------------------------------------- */
                    758:
                    759: /* ---------------------------------------------------------------------- */
                    760: /* ----- Poly hash and Inner-Product hash Constants --------------------- */
                    761: /* ---------------------------------------------------------------------- */
                    762:
                    763: /* Primes and masks */
                    764: #define p36    ((UINT64)0x0000000FFFFFFFFBull)              /* 2^36 -  5 */
                    765: #define p64    ((UINT64)0xFFFFFFFFFFFFFFC5ull)              /* 2^64 - 59 */
                    766: #define m36    ((UINT64)0x0000000FFFFFFFFFull)  /* The low 36 of 64 bits */
                    767:
                    768:
                    769: /* ---------------------------------------------------------------------- */
                    770:
                    771: typedef struct uhash_ctx {
                    772:     nh_ctx hash;                          /* Hash context for L1 NH hash  */
                    773:     UINT64 poly_key_8[STREAMS];           /* p64 poly keys                */
                    774:     UINT64 poly_accum[STREAMS];           /* poly hash result             */
                    775:     UINT64 ip_keys[STREAMS*4];            /* Inner-product keys           */
                    776:     UINT32 ip_trans[STREAMS];             /* Inner-product translation    */
                    777:     UINT32 msg_len;                       /* Total length of data passed  */
                    778:                                           /* to uhash */
                    779: } uhash_ctx;
                    780: typedef struct uhash_ctx *uhash_ctx_t;
                    781:
                    782: /* ---------------------------------------------------------------------- */
                    783:
                    784:
                    785: /* The polynomial hashes use Horner's rule to evaluate a polynomial one
                    786:  * word at a time. As described in the specification, poly32 and poly64
                    787:  * require keys from special domains. The following implementations exploit
                    788:  * the special domains to avoid overflow. The results are not guaranteed to
                    789:  * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
                    790:  * patches any errant values.
                    791:  */
                    792:
                    793: static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
                    794: {
                    795:     UINT32 key_hi = (UINT32)(key >> 32),
                    796:            key_lo = (UINT32)key,
                    797:            cur_hi = (UINT32)(cur >> 32),
                    798:            cur_lo = (UINT32)cur,
                    799:            x_lo,
                    800:            x_hi;
                    801:     UINT64 X,T,res;
1.13      djm       802:
1.1       pvalchev  803:     X =  MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
                    804:     x_lo = (UINT32)X;
                    805:     x_hi = (UINT32)(X >> 32);
1.13      djm       806:
1.1       pvalchev  807:     res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
1.13      djm       808:
1.1       pvalchev  809:     T = ((UINT64)x_lo << 32);
                    810:     res += T;
                    811:     if (res < T)
                    812:         res += 59;
                    813:
                    814:     res += data;
                    815:     if (res < data)
                    816:         res += 59;
                    817:
                    818:     return res;
                    819: }
                    820:
                    821:
                    822: /* Although UMAC is specified to use a ramped polynomial hash scheme, this
                    823:  * implementation does not handle all ramp levels. Because we don't handle
                    824:  * the ramp up to p128 modulus in this implementation, we are limited to
                    825:  * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
                    826:  * bytes input to UMAC per tag, ie. 16MB).
                    827:  */
                    828: static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
                    829: {
                    830:     int i;
                    831:     UINT64 *data=(UINT64*)data_in;
1.13      djm       832:
1.1       pvalchev  833:     for (i = 0; i < STREAMS; i++) {
                    834:         if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
1.14      djm       835:             hc->poly_accum[i] = poly64(hc->poly_accum[i],
1.1       pvalchev  836:                                        hc->poly_key_8[i], p64 - 1);
                    837:             hc->poly_accum[i] = poly64(hc->poly_accum[i],
                    838:                                        hc->poly_key_8[i], (data[i] - 59));
                    839:         } else {
                    840:             hc->poly_accum[i] = poly64(hc->poly_accum[i],
                    841:                                        hc->poly_key_8[i], data[i]);
                    842:         }
                    843:     }
                    844: }
                    845:
                    846:
                    847: /* ---------------------------------------------------------------------- */
                    848:
                    849:
                    850: /* The final step in UHASH is an inner-product hash. The poly hash
1.17      djm       851:  * produces a result not necessarily WORD_LEN bytes long. The inner-
1.1       pvalchev  852:  * product hash breaks the polyhash output into 16-bit chunks and
                    853:  * multiplies each with a 36 bit key.
                    854:  */
                    855:
                    856: static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
                    857: {
                    858:     t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);
                    859:     t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
                    860:     t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
                    861:     t = t + ipkp[3] * (UINT64)(UINT16)(data);
1.13      djm       862:
1.1       pvalchev  863:     return t;
                    864: }
                    865:
                    866: static UINT32 ip_reduce_p36(UINT64 t)
                    867: {
                    868: /* Divisionless modular reduction */
                    869:     UINT64 ret;
1.13      djm       870:
1.1       pvalchev  871:     ret = (t & m36) + 5 * (t >> 36);
                    872:     if (ret >= p36)
                    873:         ret -= p36;
                    874:
                    875:     /* return least significant 32 bits */
                    876:     return (UINT32)(ret);
                    877: }
                    878:
                    879:
                    880: /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
                    881:  * the polyhash stage is skipped and ip_short is applied directly to the
                    882:  * NH output.
                    883:  */
                    884: static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
                    885: {
                    886:     UINT64 t;
                    887:     UINT64 *nhp = (UINT64 *)nh_res;
1.13      djm       888:
1.1       pvalchev  889:     t  = ip_aux(0,ahc->ip_keys, nhp[0]);
                    890:     STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
                    891: #if (UMAC_OUTPUT_LEN >= 8)
                    892:     t  = ip_aux(0,ahc->ip_keys+4, nhp[1]);
                    893:     STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]);
                    894: #endif
                    895: #if (UMAC_OUTPUT_LEN >= 12)
                    896:     t  = ip_aux(0,ahc->ip_keys+8, nhp[2]);
                    897:     STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]);
                    898: #endif
                    899: #if (UMAC_OUTPUT_LEN == 16)
                    900:     t  = ip_aux(0,ahc->ip_keys+12, nhp[3]);
                    901:     STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]);
                    902: #endif
                    903: }
                    904:
                    905: /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
                    906:  * the polyhash stage is not skipped and ip_long is applied to the
                    907:  * polyhash output.
                    908:  */
                    909: static void ip_long(uhash_ctx_t ahc, u_char *res)
                    910: {
                    911:     int i;
                    912:     UINT64 t;
                    913:
                    914:     for (i = 0; i < STREAMS; i++) {
                    915:         /* fix polyhash output not in Z_p64 */
                    916:         if (ahc->poly_accum[i] >= p64)
                    917:             ahc->poly_accum[i] -= p64;
                    918:         t  = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
1.14      djm       919:         STORE_UINT32_BIG((UINT32 *)res+i,
1.1       pvalchev  920:                          ip_reduce_p36(t) ^ ahc->ip_trans[i]);
                    921:     }
                    922: }
                    923:
                    924:
                    925: /* ---------------------------------------------------------------------- */
                    926:
                    927: /* ---------------------------------------------------------------------- */
                    928:
                    929: /* Reset uhash context for next hash session */
                    930: static int uhash_reset(uhash_ctx_t pc)
                    931: {
                    932:     nh_reset(&pc->hash);
                    933:     pc->msg_len = 0;
                    934:     pc->poly_accum[0] = 1;
                    935: #if (UMAC_OUTPUT_LEN >= 8)
                    936:     pc->poly_accum[1] = 1;
                    937: #endif
                    938: #if (UMAC_OUTPUT_LEN >= 12)
                    939:     pc->poly_accum[2] = 1;
                    940: #endif
                    941: #if (UMAC_OUTPUT_LEN == 16)
                    942:     pc->poly_accum[3] = 1;
                    943: #endif
                    944:     return 1;
                    945: }
                    946:
                    947: /* ---------------------------------------------------------------------- */
                    948:
                    949: /* Given a pointer to the internal key needed by kdf() and a uhash context,
                    950:  * initialize the NH context and generate keys needed for poly and inner-
                    951:  * product hashing. All keys are endian adjusted in memory so that native
                    952:  * loads cause correct keys to be in registers during calculation.
                    953:  */
                    954: static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
                    955: {
                    956:     int i;
                    957:     UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
1.13      djm       958:
1.1       pvalchev  959:     /* Zero the entire uhash context */
                    960:     memset(ahc, 0, sizeof(uhash_ctx));
                    961:
                    962:     /* Initialize the L1 hash */
                    963:     nh_init(&ahc->hash, prf_key);
1.13      djm       964:
1.1       pvalchev  965:     /* Setup L2 hash variables */
                    966:     kdf(buf, prf_key, 2, sizeof(buf));    /* Fill buffer with index 1 key */
                    967:     for (i = 0; i < STREAMS; i++) {
                    968:         /* Fill keys from the buffer, skipping bytes in the buffer not
                    969:          * used by this implementation. Endian reverse the keys if on a
                    970:          * little-endian computer.
                    971:          */
                    972:         memcpy(ahc->poly_key_8+i, buf+24*i, 8);
                    973:         endian_convert_if_le(ahc->poly_key_8+i, 8, 8);
                    974:         /* Mask the 64-bit keys to their special domain */
                    975:         ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
                    976:         ahc->poly_accum[i] = 1;  /* Our polyhash prepends a non-zero word */
                    977:     }
1.13      djm       978:
1.1       pvalchev  979:     /* Setup L3-1 hash variables */
                    980:     kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
                    981:     for (i = 0; i < STREAMS; i++)
                    982:           memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
                    983:                                                  4*sizeof(UINT64));
1.14      djm       984:     endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),
1.1       pvalchev  985:                                                   sizeof(ahc->ip_keys));
                    986:     for (i = 0; i < STREAMS*4; i++)
                    987:         ahc->ip_keys[i] %= p36;  /* Bring into Z_p36 */
1.13      djm       988:
1.1       pvalchev  989:     /* Setup L3-2 hash variables    */
                    990:     /* Fill buffer with index 4 key */
                    991:     kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
                    992:     endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),
                    993:                          STREAMS * sizeof(UINT32));
1.12      markus    994:     explicit_bzero(buf, sizeof(buf));
1.1       pvalchev  995: }
                    996:
                    997: /* ---------------------------------------------------------------------- */
                    998:
                    999: #if 0
                   1000: static uhash_ctx_t uhash_alloc(u_char key[])
                   1001: {
                   1002: /* Allocate memory and force to a 16-byte boundary. */
                   1003:     uhash_ctx_t ctx;
                   1004:     u_char bytes_to_add;
                   1005:     aes_int_key prf_key;
1.13      djm      1006:
1.1       pvalchev 1007:     ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
                   1008:     if (ctx) {
                   1009:         if (ALLOC_BOUNDARY) {
                   1010:             bytes_to_add = ALLOC_BOUNDARY -
                   1011:                               ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1));
                   1012:             ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add);
                   1013:             *((u_char *)ctx - 1) = bytes_to_add;
                   1014:         }
                   1015:         aes_key_setup(key,prf_key);
                   1016:         uhash_init(ctx, prf_key);
                   1017:     }
                   1018:     return (ctx);
                   1019: }
                   1020: #endif
                   1021:
                   1022: /* ---------------------------------------------------------------------- */
                   1023:
                   1024: #if 0
                   1025: static int uhash_free(uhash_ctx_t ctx)
                   1026: {
                   1027: /* Free memory allocated by uhash_alloc */
                   1028:     u_char bytes_to_sub;
1.13      djm      1029:
1.1       pvalchev 1030:     if (ctx) {
                   1031:         if (ALLOC_BOUNDARY) {
                   1032:             bytes_to_sub = *((u_char *)ctx - 1);
                   1033:             ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub);
                   1034:         }
                   1035:         free(ctx);
                   1036:     }
                   1037:     return (1);
                   1038: }
                   1039: #endif
                   1040: /* ---------------------------------------------------------------------- */
                   1041:
1.7       djm      1042: static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len)
1.1       pvalchev 1043: /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
                   1044:  * hash each one with NH, calling the polyhash on each NH output.
                   1045:  */
                   1046: {
                   1047:     UWORD bytes_hashed, bytes_remaining;
1.3       pvalchev 1048:     UINT64 result_buf[STREAMS];
                   1049:     UINT8 *nh_result = (UINT8 *)&result_buf;
1.13      djm      1050:
1.1       pvalchev 1051:     if (ctx->msg_len + len <= L1_KEY_LEN) {
1.7       djm      1052:         nh_update(&ctx->hash, (const UINT8 *)input, len);
1.1       pvalchev 1053:         ctx->msg_len += len;
                   1054:     } else {
1.13      djm      1055:
1.1       pvalchev 1056:          bytes_hashed = ctx->msg_len % L1_KEY_LEN;
                   1057:          if (ctx->msg_len == L1_KEY_LEN)
                   1058:              bytes_hashed = L1_KEY_LEN;
                   1059:
                   1060:          if (bytes_hashed + len >= L1_KEY_LEN) {
                   1061:
                   1062:              /* If some bytes have been passed to the hash function      */
                   1063:              /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
                   1064:              /* bytes to complete the current nh_block.                  */
                   1065:              if (bytes_hashed) {
                   1066:                  bytes_remaining = (L1_KEY_LEN - bytes_hashed);
1.7       djm      1067:                  nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining);
1.1       pvalchev 1068:                  nh_final(&ctx->hash, nh_result);
                   1069:                  ctx->msg_len += bytes_remaining;
                   1070:                  poly_hash(ctx,(UINT32 *)nh_result);
                   1071:                  len -= bytes_remaining;
                   1072:                  input += bytes_remaining;
                   1073:              }
                   1074:
                   1075:              /* Hash directly from input stream if enough bytes */
                   1076:              while (len >= L1_KEY_LEN) {
1.7       djm      1077:                  nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN,
1.1       pvalchev 1078:                                    L1_KEY_LEN, nh_result);
                   1079:                  ctx->msg_len += L1_KEY_LEN;
                   1080:                  len -= L1_KEY_LEN;
                   1081:                  input += L1_KEY_LEN;
                   1082:                  poly_hash(ctx,(UINT32 *)nh_result);
                   1083:              }
                   1084:          }
                   1085:
                   1086:          /* pass remaining < L1_KEY_LEN bytes of input data to NH */
                   1087:          if (len) {
1.7       djm      1088:              nh_update(&ctx->hash, (const UINT8 *)input, len);
1.1       pvalchev 1089:              ctx->msg_len += len;
                   1090:          }
                   1091:      }
                   1092:
                   1093:     return (1);
                   1094: }
                   1095:
                   1096: /* ---------------------------------------------------------------------- */
                   1097:
                   1098: static int uhash_final(uhash_ctx_t ctx, u_char *res)
                   1099: /* Incorporate any pending data, pad, and generate tag */
                   1100: {
1.3       pvalchev 1101:     UINT64 result_buf[STREAMS];
                   1102:     UINT8 *nh_result = (UINT8 *)&result_buf;
1.1       pvalchev 1103:
                   1104:     if (ctx->msg_len > L1_KEY_LEN) {
                   1105:         if (ctx->msg_len % L1_KEY_LEN) {
                   1106:             nh_final(&ctx->hash, nh_result);
                   1107:             poly_hash(ctx,(UINT32 *)nh_result);
                   1108:         }
                   1109:         ip_long(ctx, res);
                   1110:     } else {
                   1111:         nh_final(&ctx->hash, nh_result);
                   1112:         ip_short(ctx,nh_result, res);
                   1113:     }
                   1114:     uhash_reset(ctx);
                   1115:     return (1);
                   1116: }
                   1117:
                   1118: /* ---------------------------------------------------------------------- */
                   1119:
                   1120: #if 0
                   1121: static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
                   1122: /* assumes that msg is in a writable buffer of length divisible by */
                   1123: /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed.           */
                   1124: {
                   1125:     UINT8 nh_result[STREAMS*sizeof(UINT64)];
                   1126:     UINT32 nh_len;
                   1127:     int extra_zeroes_needed;
1.13      djm      1128:
1.1       pvalchev 1129:     /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
                   1130:      * the polyhash.
                   1131:      */
                   1132:     if (len <= L1_KEY_LEN) {
1.15      djm      1133:        if (len == 0)                  /* If zero length messages will not */
                   1134:                nh_len = L1_PAD_BOUNDARY;  /* be seen, comment out this case   */
                   1135:        else
                   1136:                nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1.1       pvalchev 1137:         extra_zeroes_needed = nh_len - len;
                   1138:         zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
                   1139:         nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
                   1140:         ip_short(ahc,nh_result, res);
                   1141:     } else {
                   1142:         /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
                   1143:          * output to poly_hash().
                   1144:          */
                   1145:         do {
                   1146:             nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result);
                   1147:             poly_hash(ahc,(UINT32 *)nh_result);
                   1148:             len -= L1_KEY_LEN;
                   1149:             msg += L1_KEY_LEN;
                   1150:         } while (len >= L1_KEY_LEN);
                   1151:         if (len) {
                   1152:             nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
                   1153:             extra_zeroes_needed = nh_len - len;
                   1154:             zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
                   1155:             nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
                   1156:             poly_hash(ahc,(UINT32 *)nh_result);
                   1157:         }
                   1158:
                   1159:         ip_long(ahc, res);
                   1160:     }
1.13      djm      1161:
1.1       pvalchev 1162:     uhash_reset(ahc);
                   1163:     return 1;
                   1164: }
                   1165: #endif
                   1166:
                   1167: /* ---------------------------------------------------------------------- */
                   1168: /* ---------------------------------------------------------------------- */
                   1169: /* ----- Begin UMAC Section --------------------------------------------- */
                   1170: /* ---------------------------------------------------------------------- */
                   1171: /* ---------------------------------------------------------------------- */
                   1172:
                   1173: /* The UMAC interface has two interfaces, an all-at-once interface where
                   1174:  * the entire message to be authenticated is passed to UMAC in one buffer,
1.14      djm      1175:  * and a sequential interface where the message is presented a little at a
1.22    ! jsg      1176:  * time. The all-at-once is more optimized than the sequential version and
1.14      djm      1177:  * should be preferred when the sequential interface is not required.
1.1       pvalchev 1178:  */
                   1179: struct umac_ctx {
                   1180:     uhash_ctx hash;          /* Hash function for message compression    */
                   1181:     pdf_ctx pdf;             /* PDF for hashed output                    */
                   1182:     void *free_ptr;          /* Address to free this struct via          */
                   1183: } umac_ctx;
                   1184:
                   1185: /* ---------------------------------------------------------------------- */
                   1186:
                   1187: #if 0
                   1188: int umac_reset(struct umac_ctx *ctx)
                   1189: /* Reset the hash function to begin a new authentication.        */
                   1190: {
                   1191:     uhash_reset(&ctx->hash);
                   1192:     return (1);
                   1193: }
                   1194: #endif
                   1195:
                   1196: /* ---------------------------------------------------------------------- */
                   1197:
                   1198: int umac_delete(struct umac_ctx *ctx)
                   1199: /* Deallocate the ctx structure */
                   1200: {
                   1201:     if (ctx) {
                   1202:         if (ALLOC_BOUNDARY)
                   1203:             ctx = (struct umac_ctx *)ctx->free_ptr;
1.19      jsg      1204:         freezero(ctx, sizeof(*ctx) + ALLOC_BOUNDARY);
1.1       pvalchev 1205:     }
                   1206:     return (1);
                   1207: }
                   1208:
                   1209: /* ---------------------------------------------------------------------- */
                   1210:
1.7       djm      1211: struct umac_ctx *umac_new(const u_char key[])
1.14      djm      1212: /* Dynamically allocate a umac_ctx struct, initialize variables,
1.1       pvalchev 1213:  * generate subkeys from key. Align to 16-byte boundary.
                   1214:  */
                   1215: {
                   1216:     struct umac_ctx *ctx, *octx;
                   1217:     size_t bytes_to_add;
                   1218:     aes_int_key prf_key;
1.13      djm      1219:
1.8       djm      1220:     octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY);
1.1       pvalchev 1221:     if (ctx) {
                   1222:         if (ALLOC_BOUNDARY) {
                   1223:             bytes_to_add = ALLOC_BOUNDARY -
                   1224:                               ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1));
                   1225:             ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add);
                   1226:         }
                   1227:         ctx->free_ptr = octx;
1.7       djm      1228:         aes_key_setup(key, prf_key);
1.1       pvalchev 1229:         pdf_init(&ctx->pdf, prf_key);
                   1230:         uhash_init(&ctx->hash, prf_key);
1.12      markus   1231:         explicit_bzero(prf_key, sizeof(prf_key));
1.1       pvalchev 1232:     }
1.13      djm      1233:
1.1       pvalchev 1234:     return (ctx);
                   1235: }
                   1236:
                   1237: /* ---------------------------------------------------------------------- */
                   1238:
1.7       djm      1239: int umac_final(struct umac_ctx *ctx, u_char tag[], const u_char nonce[8])
1.1       pvalchev 1240: /* Incorporate any pending data, pad, and generate tag */
                   1241: {
                   1242:     uhash_final(&ctx->hash, (u_char *)tag);
1.7       djm      1243:     pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag);
1.13      djm      1244:
1.1       pvalchev 1245:     return (1);
                   1246: }
                   1247:
                   1248: /* ---------------------------------------------------------------------- */
                   1249:
1.7       djm      1250: int umac_update(struct umac_ctx *ctx, const u_char *input, long len)
1.1       pvalchev 1251: /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and   */
                   1252: /* hash each one, calling the PDF on the hashed output whenever the hash- */
                   1253: /* output buffer is full.                                                 */
                   1254: {
                   1255:     uhash_update(&ctx->hash, input, len);
                   1256:     return (1);
                   1257: }
                   1258:
                   1259: /* ---------------------------------------------------------------------- */
                   1260:
                   1261: #if 0
1.14      djm      1262: int umac(struct umac_ctx *ctx, u_char *input,
1.1       pvalchev 1263:          long len, u_char tag[],
                   1264:          u_char nonce[8])
                   1265: /* All-in-one version simply calls umac_update() and umac_final().        */
                   1266: {
                   1267:     uhash(&ctx->hash, input, len, (u_char *)tag);
                   1268:     pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1.13      djm      1269:
1.1       pvalchev 1270:     return (1);
                   1271: }
                   1272: #endif
                   1273:
                   1274: /* ---------------------------------------------------------------------- */
                   1275: /* ---------------------------------------------------------------------- */
                   1276: /* ----- End UMAC Section ----------------------------------------------- */
                   1277: /* ---------------------------------------------------------------------- */
                   1278: /* ---------------------------------------------------------------------- */