[BACK]Return to umac.c CVS log [TXT][DIR] Up to [local] / src / usr.bin / ssh

Annotation of src/usr.bin/ssh/umac.c, Revision 1.8

1.8     ! djm         1: /* $OpenBSD: umac.c,v 1.7 2013/07/22 05:00:17 djm Exp $ */
1.1       pvalchev    2: /* -----------------------------------------------------------------------
                      3:  *
                      4:  * umac.c -- C Implementation UMAC Message Authentication
                      5:  *
                      6:  * Version 0.93b of rfc4418.txt -- 2006 July 18
                      7:  *
                      8:  * For a full description of UMAC message authentication see the UMAC
                      9:  * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
                     10:  * Please report bugs and suggestions to the UMAC webpage.
                     11:  *
                     12:  * Copyright (c) 1999-2006 Ted Krovetz
                     13:  *
                     14:  * Permission to use, copy, modify, and distribute this software and
                     15:  * its documentation for any purpose and with or without fee, is hereby
                     16:  * granted provided that the above copyright notice appears in all copies
                     17:  * and in supporting documentation, and that the name of the copyright
                     18:  * holder not be used in advertising or publicity pertaining to
                     19:  * distribution of the software without specific, written prior permission.
                     20:  *
                     21:  * Comments should be directed to Ted Krovetz (tdk@acm.org)
                     22:  *
                     23:  * ---------------------------------------------------------------------- */
                     24:
                     25:  /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
                     26:   *
                     27:   * 1) This version does not work properly on messages larger than 16MB
                     28:   *
                     29:   * 2) If you set the switch to use SSE2, then all data must be 16-byte
                     30:   *    aligned
                     31:   *
                     32:   * 3) When calling the function umac(), it is assumed that msg is in
                     33:   * a writable buffer of length divisible by 32 bytes. The message itself
                     34:   * does not have to fill the entire buffer, but bytes beyond msg may be
                     35:   * zeroed.
                     36:   *
                     37:   * 4) Three free AES implementations are supported by this implementation of
                     38:   * UMAC. Paulo Barreto's version is in the public domain and can be found
                     39:   * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
                     40:   * "Barreto"). The only two files needed are rijndael-alg-fst.c and
                     41:   * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
                     42:   * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It
                     43:   * includes a fast IA-32 assembly version. The OpenSSL crypo library is
                     44:   * the third.
                     45:   *
                     46:   * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
                     47:   * produced under gcc with optimizations set -O3 or higher. Dunno why.
                     48:   *
                     49:   /////////////////////////////////////////////////////////////////////// */
                     50:
                     51: /* ---------------------------------------------------------------------- */
                     52: /* --- User Switches ---------------------------------------------------- */
                     53: /* ---------------------------------------------------------------------- */
                     54:
                     55: #define UMAC_OUTPUT_LEN     8  /* Alowable: 4, 8, 12, 16                  */
                     56: /* #define FORCE_C_ONLY        1  ANSI C and 64-bit integers req'd        */
                     57: /* #define AES_IMPLEMENTAION   1  1 = OpenSSL, 2 = Barreto, 3 = Gladman   */
                     58: /* #define SSE2                0  Is SSE2 is available?                   */
                     59: /* #define RUN_TESTS           0  Run basic correctness/speed tests       */
                     60: /* #define UMAC_AE_SUPPORT     0  Enable auhthenticated encrytion         */
                     61:
                     62: /* ---------------------------------------------------------------------- */
                     63: /* -- Global Includes --------------------------------------------------- */
                     64: /* ---------------------------------------------------------------------- */
                     65:
                     66: #include <sys/types.h>
                     67: #include <sys/endian.h>
                     68:
1.2       stevesk    69: #include "xmalloc.h"
1.1       pvalchev   70: #include "umac.h"
                     71: #include <string.h>
                     72: #include <stdlib.h>
                     73: #include <stddef.h>
                     74:
                     75: /* ---------------------------------------------------------------------- */
                     76: /* --- Primitive Data Types ---                                           */
                     77: /* ---------------------------------------------------------------------- */
                     78:
                     79: /* The following assumptions may need change on your system */
                     80: typedef u_int8_t       UINT8;  /* 1 byte   */
                     81: typedef u_int16_t      UINT16; /* 2 byte   */
                     82: typedef u_int32_t      UINT32; /* 4 byte   */
                     83: typedef u_int64_t      UINT64; /* 8 bytes  */
                     84: typedef unsigned int   UWORD;  /* Register */
                     85:
                     86: /* ---------------------------------------------------------------------- */
                     87: /* --- Constants -------------------------------------------------------- */
                     88: /* ---------------------------------------------------------------------- */
                     89:
                     90: #define UMAC_KEY_LEN           16  /* UMAC takes 16 bytes of external key */
                     91:
                     92: /* Message "words" are read from memory in an endian-specific manner.     */
                     93: /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must    */
                     94: /* be set true if the host computer is little-endian.                     */
                     95:
                     96: #if BYTE_ORDER == LITTLE_ENDIAN
                     97: #define __LITTLE_ENDIAN__ 1
                     98: #else
                     99: #define __LITTLE_ENDIAN__ 0
                    100: #endif
                    101:
                    102: /* ---------------------------------------------------------------------- */
                    103: /* ---------------------------------------------------------------------- */
                    104: /* ----- Architecture Specific ------------------------------------------ */
                    105: /* ---------------------------------------------------------------------- */
                    106: /* ---------------------------------------------------------------------- */
                    107:
                    108:
                    109: /* ---------------------------------------------------------------------- */
                    110: /* ---------------------------------------------------------------------- */
                    111: /* ----- Primitive Routines --------------------------------------------- */
                    112: /* ---------------------------------------------------------------------- */
                    113: /* ---------------------------------------------------------------------- */
                    114:
                    115:
                    116: /* ---------------------------------------------------------------------- */
                    117: /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
                    118: /* ---------------------------------------------------------------------- */
                    119:
                    120: #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
                    121:
                    122: /* ---------------------------------------------------------------------- */
                    123: /* --- Endian Conversion --- Forcing assembly on some platforms           */
                    124: /* ---------------------------------------------------------------------- */
                    125:
                    126: #if 0
1.7       djm       127: static UINT32 LOAD_UINT32_REVERSED(const void *ptr)
1.1       pvalchev  128: {
1.7       djm       129:     UINT32 temp = *(const UINT32 *)ptr;
1.1       pvalchev  130:     temp = (temp >> 24) | ((temp & 0x00FF0000) >> 8 )
                    131:          | ((temp & 0x0000FF00) << 8 ) | (temp << 24);
                    132:     return (UINT32)temp;
                    133: }
                    134:
                    135: static void STORE_UINT32_REVERSED(void *ptr, UINT32 x)
                    136: {
                    137:     UINT32 i = (UINT32)x;
                    138:     *(UINT32 *)ptr = (i >> 24) | ((i & 0x00FF0000) >> 8 )
                    139:                    | ((i & 0x0000FF00) << 8 ) | (i << 24);
                    140: }
                    141: #endif
                    142:
                    143: /* The following definitions use the above reversal-primitives to do the right
                    144:  * thing on endian specific load and stores.
                    145:  */
                    146:
1.7       djm       147: #define LOAD_UINT32_REVERSED(p)                (swap32(*(const UINT32 *)(p)))
1.1       pvalchev  148: #define STORE_UINT32_REVERSED(p,v)     (*(UINT32 *)(p) = swap32(v))
                    149:
                    150: #if (__LITTLE_ENDIAN__)
1.7       djm       151: #define LOAD_UINT32_LITTLE(ptr)     (*(const UINT32 *)(ptr))
1.1       pvalchev  152: #define STORE_UINT32_BIG(ptr,x)     STORE_UINT32_REVERSED(ptr,x)
                    153: #else
                    154: #define LOAD_UINT32_LITTLE(ptr)     LOAD_UINT32_REVERSED(ptr)
                    155: #define STORE_UINT32_BIG(ptr,x)     (*(UINT32 *)(ptr) = (UINT32)(x))
                    156: #endif
                    157:
                    158:
                    159:
                    160: /* ---------------------------------------------------------------------- */
                    161: /* ---------------------------------------------------------------------- */
                    162: /* ----- Begin KDF & PDF Section ---------------------------------------- */
                    163: /* ---------------------------------------------------------------------- */
                    164: /* ---------------------------------------------------------------------- */
                    165:
                    166: /* UMAC uses AES with 16 byte block and key lengths */
                    167: #define AES_BLOCK_LEN  16
                    168:
                    169: /* OpenSSL's AES */
                    170: #include <openssl/aes.h>
                    171: typedef AES_KEY aes_int_key[1];
                    172: #define aes_encryption(in,out,int_key)                  \
                    173:   AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
                    174: #define aes_key_setup(key,int_key)                      \
1.7       djm       175:   AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN*8,int_key)
1.1       pvalchev  176:
                    177: /* The user-supplied UMAC key is stretched using AES in a counter
                    178:  * mode to supply all random bits needed by UMAC. The kdf function takes
                    179:  * an AES internal key representation 'key' and writes a stream of
                    180:  * 'nbytes' bytes to the memory pointed at by 'buffer_ptr'. Each distinct
                    181:  * 'ndx' causes a distinct byte stream.
                    182:  */
                    183: static void kdf(void *buffer_ptr, aes_int_key key, UINT8 ndx, int nbytes)
                    184: {
                    185:     UINT8 in_buf[AES_BLOCK_LEN] = {0};
                    186:     UINT8 out_buf[AES_BLOCK_LEN];
                    187:     UINT8 *dst_buf = (UINT8 *)buffer_ptr;
                    188:     int i;
                    189:
                    190:     /* Setup the initial value */
                    191:     in_buf[AES_BLOCK_LEN-9] = ndx;
                    192:     in_buf[AES_BLOCK_LEN-1] = i = 1;
                    193:
                    194:     while (nbytes >= AES_BLOCK_LEN) {
                    195:         aes_encryption(in_buf, out_buf, key);
                    196:         memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
                    197:         in_buf[AES_BLOCK_LEN-1] = ++i;
                    198:         nbytes -= AES_BLOCK_LEN;
                    199:         dst_buf += AES_BLOCK_LEN;
                    200:     }
                    201:     if (nbytes) {
                    202:         aes_encryption(in_buf, out_buf, key);
                    203:         memcpy(dst_buf,out_buf,nbytes);
                    204:     }
                    205: }
                    206:
                    207: /* The final UHASH result is XOR'd with the output of a pseudorandom
                    208:  * function. Here, we use AES to generate random output and
                    209:  * xor the appropriate bytes depending on the last bits of nonce.
                    210:  * This scheme is optimized for sequential, increasing big-endian nonces.
                    211:  */
                    212:
                    213: typedef struct {
                    214:     UINT8 cache[AES_BLOCK_LEN];  /* Previous AES output is saved      */
                    215:     UINT8 nonce[AES_BLOCK_LEN];  /* The AES input making above cache  */
                    216:     aes_int_key prf_key;         /* Expanded AES key for PDF          */
                    217: } pdf_ctx;
                    218:
                    219: static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
                    220: {
                    221:     UINT8 buf[UMAC_KEY_LEN];
                    222:
                    223:     kdf(buf, prf_key, 0, UMAC_KEY_LEN);
                    224:     aes_key_setup(buf, pc->prf_key);
                    225:
                    226:     /* Initialize pdf and cache */
                    227:     memset(pc->nonce, 0, sizeof(pc->nonce));
                    228:     aes_encryption(pc->nonce, pc->cache, pc->prf_key);
                    229: }
                    230:
1.7       djm       231: static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], UINT8 buf[8])
1.1       pvalchev  232: {
                    233:     /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
                    234:      * of the AES output. If last time around we returned the ndx-1st
                    235:      * element, then we may have the result in the cache already.
                    236:      */
                    237:
                    238: #if (UMAC_OUTPUT_LEN == 4)
                    239: #define LOW_BIT_MASK 3
                    240: #elif (UMAC_OUTPUT_LEN == 8)
                    241: #define LOW_BIT_MASK 1
                    242: #elif (UMAC_OUTPUT_LEN > 8)
                    243: #define LOW_BIT_MASK 0
                    244: #endif
1.6       djm       245:     union {
                    246:         UINT8 tmp_nonce_lo[4];
                    247:         UINT32 align;
                    248:     } t;
1.1       pvalchev  249: #if LOW_BIT_MASK != 0
                    250:     int ndx = nonce[7] & LOW_BIT_MASK;
                    251: #endif
1.7       djm       252:     *(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1];
1.6       djm       253:     t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
1.1       pvalchev  254:
1.6       djm       255:     if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) ||
1.7       djm       256:          (((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) )
1.1       pvalchev  257:     {
1.7       djm       258:         ((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0];
1.6       djm       259:         ((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0];
1.1       pvalchev  260:         aes_encryption(pc->nonce, pc->cache, pc->prf_key);
                    261:     }
                    262:
                    263: #if (UMAC_OUTPUT_LEN == 4)
                    264:     *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx];
                    265: #elif (UMAC_OUTPUT_LEN == 8)
                    266:     *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx];
                    267: #elif (UMAC_OUTPUT_LEN == 12)
                    268:     ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
                    269:     ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2];
                    270: #elif (UMAC_OUTPUT_LEN == 16)
                    271:     ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
                    272:     ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1];
                    273: #endif
                    274: }
                    275:
                    276: /* ---------------------------------------------------------------------- */
                    277: /* ---------------------------------------------------------------------- */
                    278: /* ----- Begin NH Hash Section ------------------------------------------ */
                    279: /* ---------------------------------------------------------------------- */
                    280: /* ---------------------------------------------------------------------- */
                    281:
                    282: /* The NH-based hash functions used in UMAC are described in the UMAC paper
                    283:  * and specification, both of which can be found at the UMAC website.
                    284:  * The interface to this implementation has two
                    285:  * versions, one expects the entire message being hashed to be passed
                    286:  * in a single buffer and returns the hash result immediately. The second
                    287:  * allows the message to be passed in a sequence of buffers. In the
                    288:  * muliple-buffer interface, the client calls the routine nh_update() as
                    289:  * many times as necessary. When there is no more data to be fed to the
                    290:  * hash, the client calls nh_final() which calculates the hash output.
                    291:  * Before beginning another hash calculation the nh_reset() routine
                    292:  * must be called. The single-buffer routine, nh(), is equivalent to
                    293:  * the sequence of calls nh_update() and nh_final(); however it is
                    294:  * optimized and should be prefered whenever the multiple-buffer interface
                    295:  * is not necessary. When using either interface, it is the client's
                    296:  * responsability to pass no more than L1_KEY_LEN bytes per hash result.
                    297:  *
                    298:  * The routine nh_init() initializes the nh_ctx data structure and
                    299:  * must be called once, before any other PDF routine.
                    300:  */
                    301:
                    302:  /* The "nh_aux" routines do the actual NH hashing work. They
                    303:   * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
                    304:   * produce output for all STREAMS NH iterations in one call,
                    305:   * allowing the parallel implementation of the streams.
                    306:   */
                    307:
                    308: #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied  */
                    309: #define L1_KEY_LEN         1024     /* Internal key bytes                 */
                    310: #define L1_KEY_SHIFT         16     /* Toeplitz key shift between streams */
                    311: #define L1_PAD_BOUNDARY      32     /* pad message to boundary multiple   */
                    312: #define ALLOC_BOUNDARY       16     /* Keep buffers aligned to this       */
                    313: #define HASH_BUF_BYTES       64     /* nh_aux_hb buffer multiple          */
                    314:
                    315: typedef struct {
                    316:     UINT8  nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */
1.4       djm       317:     UINT8  data   [HASH_BUF_BYTES];    /* Incoming data buffer           */
1.1       pvalchev  318:     int next_data_empty;    /* Bookeeping variable for data buffer.       */
                    319:     int bytes_hashed;        /* Bytes (out of L1_KEY_LEN) incorperated.   */
                    320:     UINT64 state[STREAMS];               /* on-line state     */
                    321: } nh_ctx;
                    322:
                    323:
                    324: #if (UMAC_OUTPUT_LEN == 4)
                    325:
1.7       djm       326: static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
1.1       pvalchev  327: /* NH hashing primitive. Previous (partial) hash result is loaded and
                    328: * then stored via hp pointer. The length of the data pointed at by "dp",
                    329: * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32).  Key
                    330: * is expected to be endian compensated in memory at key setup.
                    331: */
                    332: {
                    333:     UINT64 h;
                    334:     UWORD c = dlen / 32;
                    335:     UINT32 *k = (UINT32 *)kp;
1.7       djm       336:     const UINT32 *d = (const UINT32 *)dp;
1.1       pvalchev  337:     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
                    338:     UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
                    339:
                    340:     h = *((UINT64 *)hp);
                    341:     do {
                    342:         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
                    343:         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
                    344:         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
                    345:         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
                    346:         k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
                    347:         k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
                    348:         h += MUL64((k0 + d0), (k4 + d4));
                    349:         h += MUL64((k1 + d1), (k5 + d5));
                    350:         h += MUL64((k2 + d2), (k6 + d6));
                    351:         h += MUL64((k3 + d3), (k7 + d7));
                    352:
                    353:         d += 8;
                    354:         k += 8;
                    355:     } while (--c);
                    356:   *((UINT64 *)hp) = h;
                    357: }
                    358:
                    359: #elif (UMAC_OUTPUT_LEN == 8)
                    360:
1.7       djm       361: static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
1.1       pvalchev  362: /* Same as previous nh_aux, but two streams are handled in one pass,
                    363:  * reading and writing 16 bytes of hash-state per call.
                    364:  */
                    365: {
                    366:   UINT64 h1,h2;
                    367:   UWORD c = dlen / 32;
                    368:   UINT32 *k = (UINT32 *)kp;
1.7       djm       369:   const UINT32 *d = (const UINT32 *)dp;
1.1       pvalchev  370:   UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
                    371:   UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
                    372:         k8,k9,k10,k11;
                    373:
                    374:   h1 = *((UINT64 *)hp);
                    375:   h2 = *((UINT64 *)hp + 1);
                    376:   k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
                    377:   do {
                    378:     d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
                    379:     d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
                    380:     d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
                    381:     d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
                    382:     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
                    383:     k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
                    384:
                    385:     h1 += MUL64((k0 + d0), (k4 + d4));
                    386:     h2 += MUL64((k4 + d0), (k8 + d4));
                    387:
                    388:     h1 += MUL64((k1 + d1), (k5 + d5));
                    389:     h2 += MUL64((k5 + d1), (k9 + d5));
                    390:
                    391:     h1 += MUL64((k2 + d2), (k6 + d6));
                    392:     h2 += MUL64((k6 + d2), (k10 + d6));
                    393:
                    394:     h1 += MUL64((k3 + d3), (k7 + d7));
                    395:     h2 += MUL64((k7 + d3), (k11 + d7));
                    396:
                    397:     k0 = k8; k1 = k9; k2 = k10; k3 = k11;
                    398:
                    399:     d += 8;
                    400:     k += 8;
                    401:   } while (--c);
                    402:   ((UINT64 *)hp)[0] = h1;
                    403:   ((UINT64 *)hp)[1] = h2;
                    404: }
                    405:
                    406: #elif (UMAC_OUTPUT_LEN == 12)
                    407:
1.7       djm       408: static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
1.1       pvalchev  409: /* Same as previous nh_aux, but two streams are handled in one pass,
                    410:  * reading and writing 24 bytes of hash-state per call.
                    411: */
                    412: {
                    413:     UINT64 h1,h2,h3;
                    414:     UWORD c = dlen / 32;
                    415:     UINT32 *k = (UINT32 *)kp;
1.7       djm       416:     const UINT32 *d = (const UINT32 *)dp;
1.1       pvalchev  417:     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
                    418:     UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
                    419:         k8,k9,k10,k11,k12,k13,k14,k15;
                    420:
                    421:     h1 = *((UINT64 *)hp);
                    422:     h2 = *((UINT64 *)hp + 1);
                    423:     h3 = *((UINT64 *)hp + 2);
                    424:     k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
                    425:     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
                    426:     do {
                    427:         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
                    428:         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
                    429:         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
                    430:         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
                    431:         k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
                    432:         k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
                    433:
                    434:         h1 += MUL64((k0 + d0), (k4 + d4));
                    435:         h2 += MUL64((k4 + d0), (k8 + d4));
                    436:         h3 += MUL64((k8 + d0), (k12 + d4));
                    437:
                    438:         h1 += MUL64((k1 + d1), (k5 + d5));
                    439:         h2 += MUL64((k5 + d1), (k9 + d5));
                    440:         h3 += MUL64((k9 + d1), (k13 + d5));
                    441:
                    442:         h1 += MUL64((k2 + d2), (k6 + d6));
                    443:         h2 += MUL64((k6 + d2), (k10 + d6));
                    444:         h3 += MUL64((k10 + d2), (k14 + d6));
                    445:
                    446:         h1 += MUL64((k3 + d3), (k7 + d7));
                    447:         h2 += MUL64((k7 + d3), (k11 + d7));
                    448:         h3 += MUL64((k11 + d3), (k15 + d7));
                    449:
                    450:         k0 = k8; k1 = k9; k2 = k10; k3 = k11;
                    451:         k4 = k12; k5 = k13; k6 = k14; k7 = k15;
                    452:
                    453:         d += 8;
                    454:         k += 8;
                    455:     } while (--c);
                    456:     ((UINT64 *)hp)[0] = h1;
                    457:     ((UINT64 *)hp)[1] = h2;
                    458:     ((UINT64 *)hp)[2] = h3;
                    459: }
                    460:
                    461: #elif (UMAC_OUTPUT_LEN == 16)
                    462:
1.7       djm       463: static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
1.1       pvalchev  464: /* Same as previous nh_aux, but two streams are handled in one pass,
                    465:  * reading and writing 24 bytes of hash-state per call.
                    466: */
                    467: {
                    468:     UINT64 h1,h2,h3,h4;
                    469:     UWORD c = dlen / 32;
                    470:     UINT32 *k = (UINT32 *)kp;
1.7       djm       471:     const UINT32 *d = (const UINT32 *)dp;
1.1       pvalchev  472:     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
                    473:     UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
                    474:         k8,k9,k10,k11,k12,k13,k14,k15,
                    475:         k16,k17,k18,k19;
                    476:
                    477:     h1 = *((UINT64 *)hp);
                    478:     h2 = *((UINT64 *)hp + 1);
                    479:     h3 = *((UINT64 *)hp + 2);
                    480:     h4 = *((UINT64 *)hp + 3);
                    481:     k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
                    482:     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
                    483:     do {
                    484:         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
                    485:         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
                    486:         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
                    487:         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
                    488:         k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
                    489:         k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
                    490:         k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
                    491:
                    492:         h1 += MUL64((k0 + d0), (k4 + d4));
                    493:         h2 += MUL64((k4 + d0), (k8 + d4));
                    494:         h3 += MUL64((k8 + d0), (k12 + d4));
                    495:         h4 += MUL64((k12 + d0), (k16 + d4));
                    496:
                    497:         h1 += MUL64((k1 + d1), (k5 + d5));
                    498:         h2 += MUL64((k5 + d1), (k9 + d5));
                    499:         h3 += MUL64((k9 + d1), (k13 + d5));
                    500:         h4 += MUL64((k13 + d1), (k17 + d5));
                    501:
                    502:         h1 += MUL64((k2 + d2), (k6 + d6));
                    503:         h2 += MUL64((k6 + d2), (k10 + d6));
                    504:         h3 += MUL64((k10 + d2), (k14 + d6));
                    505:         h4 += MUL64((k14 + d2), (k18 + d6));
                    506:
                    507:         h1 += MUL64((k3 + d3), (k7 + d7));
                    508:         h2 += MUL64((k7 + d3), (k11 + d7));
                    509:         h3 += MUL64((k11 + d3), (k15 + d7));
                    510:         h4 += MUL64((k15 + d3), (k19 + d7));
                    511:
                    512:         k0 = k8; k1 = k9; k2 = k10; k3 = k11;
                    513:         k4 = k12; k5 = k13; k6 = k14; k7 = k15;
                    514:         k8 = k16; k9 = k17; k10 = k18; k11 = k19;
                    515:
                    516:         d += 8;
                    517:         k += 8;
                    518:     } while (--c);
                    519:     ((UINT64 *)hp)[0] = h1;
                    520:     ((UINT64 *)hp)[1] = h2;
                    521:     ((UINT64 *)hp)[2] = h3;
                    522:     ((UINT64 *)hp)[3] = h4;
                    523: }
                    524:
                    525: /* ---------------------------------------------------------------------- */
                    526: #endif  /* UMAC_OUTPUT_LENGTH */
                    527: /* ---------------------------------------------------------------------- */
                    528:
                    529:
                    530: /* ---------------------------------------------------------------------- */
                    531:
1.7       djm       532: static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
1.1       pvalchev  533: /* This function is a wrapper for the primitive NH hash functions. It takes
                    534:  * as argument "hc" the current hash context and a buffer which must be a
                    535:  * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
                    536:  * appropriately according to how much message has been hashed already.
                    537:  */
                    538: {
                    539:     UINT8 *key;
                    540:
                    541:     key = hc->nh_key + hc->bytes_hashed;
                    542:     nh_aux(key, buf, hc->state, nbytes);
                    543: }
                    544:
                    545: /* ---------------------------------------------------------------------- */
                    546:
                    547: static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)
                    548: /* We endian convert the keys on little-endian computers to               */
                    549: /* compensate for the lack of big-endian memory reads during hashing.     */
                    550: {
                    551:     UWORD iters = num_bytes / bpw;
                    552:     if (bpw == 4) {
                    553:         UINT32 *p = (UINT32 *)buf;
                    554:         do {
                    555:             *p = LOAD_UINT32_REVERSED(p);
                    556:             p++;
                    557:         } while (--iters);
                    558:     } else if (bpw == 8) {
                    559:         UINT32 *p = (UINT32 *)buf;
                    560:         UINT32 t;
                    561:         do {
                    562:             t = LOAD_UINT32_REVERSED(p+1);
                    563:             p[1] = LOAD_UINT32_REVERSED(p);
                    564:             p[0] = t;
                    565:             p += 2;
                    566:         } while (--iters);
                    567:     }
                    568: }
                    569: #if (__LITTLE_ENDIAN__)
                    570: #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
                    571: #else
                    572: #define endian_convert_if_le(x,y,z) do{}while(0)  /* Do nothing */
                    573: #endif
                    574:
                    575: /* ---------------------------------------------------------------------- */
                    576:
                    577: static void nh_reset(nh_ctx *hc)
                    578: /* Reset nh_ctx to ready for hashing of new data */
                    579: {
                    580:     hc->bytes_hashed = 0;
                    581:     hc->next_data_empty = 0;
                    582:     hc->state[0] = 0;
                    583: #if (UMAC_OUTPUT_LEN >= 8)
                    584:     hc->state[1] = 0;
                    585: #endif
                    586: #if (UMAC_OUTPUT_LEN >= 12)
                    587:     hc->state[2] = 0;
                    588: #endif
                    589: #if (UMAC_OUTPUT_LEN == 16)
                    590:     hc->state[3] = 0;
                    591: #endif
                    592:
                    593: }
                    594:
                    595: /* ---------------------------------------------------------------------- */
                    596:
                    597: static void nh_init(nh_ctx *hc, aes_int_key prf_key)
                    598: /* Generate nh_key, endian convert and reset to be ready for hashing.   */
                    599: {
                    600:     kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));
                    601:     endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key));
                    602:     nh_reset(hc);
                    603: }
                    604:
                    605: /* ---------------------------------------------------------------------- */
                    606:
1.7       djm       607: static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
1.1       pvalchev  608: /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an    */
                    609: /* even multiple of HASH_BUF_BYTES.                                       */
                    610: {
                    611:     UINT32 i,j;
                    612:
                    613:     j = hc->next_data_empty;
                    614:     if ((j + nbytes) >= HASH_BUF_BYTES) {
                    615:         if (j) {
                    616:             i = HASH_BUF_BYTES - j;
                    617:             memcpy(hc->data+j, buf, i);
                    618:             nh_transform(hc,hc->data,HASH_BUF_BYTES);
                    619:             nbytes -= i;
                    620:             buf += i;
                    621:             hc->bytes_hashed += HASH_BUF_BYTES;
                    622:         }
                    623:         if (nbytes >= HASH_BUF_BYTES) {
                    624:             i = nbytes & ~(HASH_BUF_BYTES - 1);
                    625:             nh_transform(hc, buf, i);
                    626:             nbytes -= i;
                    627:             buf += i;
                    628:             hc->bytes_hashed += i;
                    629:         }
                    630:         j = 0;
                    631:     }
                    632:     memcpy(hc->data + j, buf, nbytes);
                    633:     hc->next_data_empty = j + nbytes;
                    634: }
                    635:
                    636: /* ---------------------------------------------------------------------- */
                    637:
                    638: static void zero_pad(UINT8 *p, int nbytes)
                    639: {
                    640: /* Write "nbytes" of zeroes, beginning at "p" */
                    641:     if (nbytes >= (int)sizeof(UWORD)) {
                    642:         while ((ptrdiff_t)p % sizeof(UWORD)) {
                    643:             *p = 0;
                    644:             nbytes--;
                    645:             p++;
                    646:         }
                    647:         while (nbytes >= (int)sizeof(UWORD)) {
                    648:             *(UWORD *)p = 0;
                    649:             nbytes -= sizeof(UWORD);
                    650:             p += sizeof(UWORD);
                    651:         }
                    652:     }
                    653:     while (nbytes) {
                    654:         *p = 0;
                    655:         nbytes--;
                    656:         p++;
                    657:     }
                    658: }
                    659:
                    660: /* ---------------------------------------------------------------------- */
                    661:
                    662: static void nh_final(nh_ctx *hc, UINT8 *result)
                    663: /* After passing some number of data buffers to nh_update() for integration
                    664:  * into an NH context, nh_final is called to produce a hash result. If any
                    665:  * bytes are in the buffer hc->data, incorporate them into the
                    666:  * NH context. Finally, add into the NH accumulation "state" the total number
                    667:  * of bits hashed. The resulting numbers are written to the buffer "result".
                    668:  * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
                    669:  */
                    670: {
                    671:     int nh_len, nbits;
                    672:
                    673:     if (hc->next_data_empty != 0) {
                    674:         nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &
                    675:                                                 ~(L1_PAD_BOUNDARY - 1));
                    676:         zero_pad(hc->data + hc->next_data_empty,
                    677:                                           nh_len - hc->next_data_empty);
                    678:         nh_transform(hc, hc->data, nh_len);
                    679:         hc->bytes_hashed += hc->next_data_empty;
                    680:     } else if (hc->bytes_hashed == 0) {
                    681:        nh_len = L1_PAD_BOUNDARY;
                    682:         zero_pad(hc->data, L1_PAD_BOUNDARY);
                    683:         nh_transform(hc, hc->data, nh_len);
                    684:     }
                    685:
                    686:     nbits = (hc->bytes_hashed << 3);
                    687:     ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;
                    688: #if (UMAC_OUTPUT_LEN >= 8)
                    689:     ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;
                    690: #endif
                    691: #if (UMAC_OUTPUT_LEN >= 12)
                    692:     ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;
                    693: #endif
                    694: #if (UMAC_OUTPUT_LEN == 16)
                    695:     ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;
                    696: #endif
                    697:     nh_reset(hc);
                    698: }
                    699:
                    700: /* ---------------------------------------------------------------------- */
                    701:
1.7       djm       702: static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len,
1.1       pvalchev  703:                UINT32 unpadded_len, UINT8 *result)
                    704: /* All-in-one nh_update() and nh_final() equivalent.
                    705:  * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
                    706:  * well aligned
                    707:  */
                    708: {
                    709:     UINT32 nbits;
                    710:
                    711:     /* Initialize the hash state */
                    712:     nbits = (unpadded_len << 3);
                    713:
                    714:     ((UINT64 *)result)[0] = nbits;
                    715: #if (UMAC_OUTPUT_LEN >= 8)
                    716:     ((UINT64 *)result)[1] = nbits;
                    717: #endif
                    718: #if (UMAC_OUTPUT_LEN >= 12)
                    719:     ((UINT64 *)result)[2] = nbits;
                    720: #endif
                    721: #if (UMAC_OUTPUT_LEN == 16)
                    722:     ((UINT64 *)result)[3] = nbits;
                    723: #endif
                    724:
                    725:     nh_aux(hc->nh_key, buf, result, padded_len);
                    726: }
                    727:
                    728: /* ---------------------------------------------------------------------- */
                    729: /* ---------------------------------------------------------------------- */
                    730: /* ----- Begin UHASH Section -------------------------------------------- */
                    731: /* ---------------------------------------------------------------------- */
                    732: /* ---------------------------------------------------------------------- */
                    733:
                    734: /* UHASH is a multi-layered algorithm. Data presented to UHASH is first
                    735:  * hashed by NH. The NH output is then hashed by a polynomial-hash layer
                    736:  * unless the initial data to be hashed is short. After the polynomial-
                    737:  * layer, an inner-product hash is used to produce the final UHASH output.
                    738:  *
                    739:  * UHASH provides two interfaces, one all-at-once and another where data
                    740:  * buffers are presented sequentially. In the sequential interface, the
                    741:  * UHASH client calls the routine uhash_update() as many times as necessary.
                    742:  * When there is no more data to be fed to UHASH, the client calls
                    743:  * uhash_final() which
                    744:  * calculates the UHASH output. Before beginning another UHASH calculation
                    745:  * the uhash_reset() routine must be called. The all-at-once UHASH routine,
                    746:  * uhash(), is equivalent to the sequence of calls uhash_update() and
                    747:  * uhash_final(); however it is optimized and should be
                    748:  * used whenever the sequential interface is not necessary.
                    749:  *
                    750:  * The routine uhash_init() initializes the uhash_ctx data structure and
                    751:  * must be called once, before any other UHASH routine.
                    752:  */
                    753:
                    754: /* ---------------------------------------------------------------------- */
                    755: /* ----- Constants and uhash_ctx ---------------------------------------- */
                    756: /* ---------------------------------------------------------------------- */
                    757:
                    758: /* ---------------------------------------------------------------------- */
                    759: /* ----- Poly hash and Inner-Product hash Constants --------------------- */
                    760: /* ---------------------------------------------------------------------- */
                    761:
                    762: /* Primes and masks */
                    763: #define p36    ((UINT64)0x0000000FFFFFFFFBull)              /* 2^36 -  5 */
                    764: #define p64    ((UINT64)0xFFFFFFFFFFFFFFC5ull)              /* 2^64 - 59 */
                    765: #define m36    ((UINT64)0x0000000FFFFFFFFFull)  /* The low 36 of 64 bits */
                    766:
                    767:
                    768: /* ---------------------------------------------------------------------- */
                    769:
                    770: typedef struct uhash_ctx {
                    771:     nh_ctx hash;                          /* Hash context for L1 NH hash  */
                    772:     UINT64 poly_key_8[STREAMS];           /* p64 poly keys                */
                    773:     UINT64 poly_accum[STREAMS];           /* poly hash result             */
                    774:     UINT64 ip_keys[STREAMS*4];            /* Inner-product keys           */
                    775:     UINT32 ip_trans[STREAMS];             /* Inner-product translation    */
                    776:     UINT32 msg_len;                       /* Total length of data passed  */
                    777:                                           /* to uhash */
                    778: } uhash_ctx;
                    779: typedef struct uhash_ctx *uhash_ctx_t;
                    780:
                    781: /* ---------------------------------------------------------------------- */
                    782:
                    783:
                    784: /* The polynomial hashes use Horner's rule to evaluate a polynomial one
                    785:  * word at a time. As described in the specification, poly32 and poly64
                    786:  * require keys from special domains. The following implementations exploit
                    787:  * the special domains to avoid overflow. The results are not guaranteed to
                    788:  * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
                    789:  * patches any errant values.
                    790:  */
                    791:
                    792: static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
                    793: {
                    794:     UINT32 key_hi = (UINT32)(key >> 32),
                    795:            key_lo = (UINT32)key,
                    796:            cur_hi = (UINT32)(cur >> 32),
                    797:            cur_lo = (UINT32)cur,
                    798:            x_lo,
                    799:            x_hi;
                    800:     UINT64 X,T,res;
                    801:
                    802:     X =  MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
                    803:     x_lo = (UINT32)X;
                    804:     x_hi = (UINT32)(X >> 32);
                    805:
                    806:     res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
                    807:
                    808:     T = ((UINT64)x_lo << 32);
                    809:     res += T;
                    810:     if (res < T)
                    811:         res += 59;
                    812:
                    813:     res += data;
                    814:     if (res < data)
                    815:         res += 59;
                    816:
                    817:     return res;
                    818: }
                    819:
                    820:
                    821: /* Although UMAC is specified to use a ramped polynomial hash scheme, this
                    822:  * implementation does not handle all ramp levels. Because we don't handle
                    823:  * the ramp up to p128 modulus in this implementation, we are limited to
                    824:  * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
                    825:  * bytes input to UMAC per tag, ie. 16MB).
                    826:  */
                    827: static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
                    828: {
                    829:     int i;
                    830:     UINT64 *data=(UINT64*)data_in;
                    831:
                    832:     for (i = 0; i < STREAMS; i++) {
                    833:         if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
                    834:             hc->poly_accum[i] = poly64(hc->poly_accum[i],
                    835:                                        hc->poly_key_8[i], p64 - 1);
                    836:             hc->poly_accum[i] = poly64(hc->poly_accum[i],
                    837:                                        hc->poly_key_8[i], (data[i] - 59));
                    838:         } else {
                    839:             hc->poly_accum[i] = poly64(hc->poly_accum[i],
                    840:                                        hc->poly_key_8[i], data[i]);
                    841:         }
                    842:     }
                    843: }
                    844:
                    845:
                    846: /* ---------------------------------------------------------------------- */
                    847:
                    848:
                    849: /* The final step in UHASH is an inner-product hash. The poly hash
                    850:  * produces a result not neccesarily WORD_LEN bytes long. The inner-
                    851:  * product hash breaks the polyhash output into 16-bit chunks and
                    852:  * multiplies each with a 36 bit key.
                    853:  */
                    854:
                    855: static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
                    856: {
                    857:     t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);
                    858:     t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
                    859:     t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
                    860:     t = t + ipkp[3] * (UINT64)(UINT16)(data);
                    861:
                    862:     return t;
                    863: }
                    864:
                    865: static UINT32 ip_reduce_p36(UINT64 t)
                    866: {
                    867: /* Divisionless modular reduction */
                    868:     UINT64 ret;
                    869:
                    870:     ret = (t & m36) + 5 * (t >> 36);
                    871:     if (ret >= p36)
                    872:         ret -= p36;
                    873:
                    874:     /* return least significant 32 bits */
                    875:     return (UINT32)(ret);
                    876: }
                    877:
                    878:
                    879: /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
                    880:  * the polyhash stage is skipped and ip_short is applied directly to the
                    881:  * NH output.
                    882:  */
                    883: static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
                    884: {
                    885:     UINT64 t;
                    886:     UINT64 *nhp = (UINT64 *)nh_res;
                    887:
                    888:     t  = ip_aux(0,ahc->ip_keys, nhp[0]);
                    889:     STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
                    890: #if (UMAC_OUTPUT_LEN >= 8)
                    891:     t  = ip_aux(0,ahc->ip_keys+4, nhp[1]);
                    892:     STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]);
                    893: #endif
                    894: #if (UMAC_OUTPUT_LEN >= 12)
                    895:     t  = ip_aux(0,ahc->ip_keys+8, nhp[2]);
                    896:     STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]);
                    897: #endif
                    898: #if (UMAC_OUTPUT_LEN == 16)
                    899:     t  = ip_aux(0,ahc->ip_keys+12, nhp[3]);
                    900:     STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]);
                    901: #endif
                    902: }
                    903:
                    904: /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
                    905:  * the polyhash stage is not skipped and ip_long is applied to the
                    906:  * polyhash output.
                    907:  */
                    908: static void ip_long(uhash_ctx_t ahc, u_char *res)
                    909: {
                    910:     int i;
                    911:     UINT64 t;
                    912:
                    913:     for (i = 0; i < STREAMS; i++) {
                    914:         /* fix polyhash output not in Z_p64 */
                    915:         if (ahc->poly_accum[i] >= p64)
                    916:             ahc->poly_accum[i] -= p64;
                    917:         t  = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
                    918:         STORE_UINT32_BIG((UINT32 *)res+i,
                    919:                          ip_reduce_p36(t) ^ ahc->ip_trans[i]);
                    920:     }
                    921: }
                    922:
                    923:
                    924: /* ---------------------------------------------------------------------- */
                    925:
                    926: /* ---------------------------------------------------------------------- */
                    927:
                    928: /* Reset uhash context for next hash session */
                    929: static int uhash_reset(uhash_ctx_t pc)
                    930: {
                    931:     nh_reset(&pc->hash);
                    932:     pc->msg_len = 0;
                    933:     pc->poly_accum[0] = 1;
                    934: #if (UMAC_OUTPUT_LEN >= 8)
                    935:     pc->poly_accum[1] = 1;
                    936: #endif
                    937: #if (UMAC_OUTPUT_LEN >= 12)
                    938:     pc->poly_accum[2] = 1;
                    939: #endif
                    940: #if (UMAC_OUTPUT_LEN == 16)
                    941:     pc->poly_accum[3] = 1;
                    942: #endif
                    943:     return 1;
                    944: }
                    945:
                    946: /* ---------------------------------------------------------------------- */
                    947:
                    948: /* Given a pointer to the internal key needed by kdf() and a uhash context,
                    949:  * initialize the NH context and generate keys needed for poly and inner-
                    950:  * product hashing. All keys are endian adjusted in memory so that native
                    951:  * loads cause correct keys to be in registers during calculation.
                    952:  */
                    953: static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
                    954: {
                    955:     int i;
                    956:     UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
                    957:
                    958:     /* Zero the entire uhash context */
                    959:     memset(ahc, 0, sizeof(uhash_ctx));
                    960:
                    961:     /* Initialize the L1 hash */
                    962:     nh_init(&ahc->hash, prf_key);
                    963:
                    964:     /* Setup L2 hash variables */
                    965:     kdf(buf, prf_key, 2, sizeof(buf));    /* Fill buffer with index 1 key */
                    966:     for (i = 0; i < STREAMS; i++) {
                    967:         /* Fill keys from the buffer, skipping bytes in the buffer not
                    968:          * used by this implementation. Endian reverse the keys if on a
                    969:          * little-endian computer.
                    970:          */
                    971:         memcpy(ahc->poly_key_8+i, buf+24*i, 8);
                    972:         endian_convert_if_le(ahc->poly_key_8+i, 8, 8);
                    973:         /* Mask the 64-bit keys to their special domain */
                    974:         ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
                    975:         ahc->poly_accum[i] = 1;  /* Our polyhash prepends a non-zero word */
                    976:     }
                    977:
                    978:     /* Setup L3-1 hash variables */
                    979:     kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
                    980:     for (i = 0; i < STREAMS; i++)
                    981:           memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
                    982:                                                  4*sizeof(UINT64));
                    983:     endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),
                    984:                                                   sizeof(ahc->ip_keys));
                    985:     for (i = 0; i < STREAMS*4; i++)
                    986:         ahc->ip_keys[i] %= p36;  /* Bring into Z_p36 */
                    987:
                    988:     /* Setup L3-2 hash variables    */
                    989:     /* Fill buffer with index 4 key */
                    990:     kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
                    991:     endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),
                    992:                          STREAMS * sizeof(UINT32));
                    993: }
                    994:
                    995: /* ---------------------------------------------------------------------- */
                    996:
                    997: #if 0
                    998: static uhash_ctx_t uhash_alloc(u_char key[])
                    999: {
                   1000: /* Allocate memory and force to a 16-byte boundary. */
                   1001:     uhash_ctx_t ctx;
                   1002:     u_char bytes_to_add;
                   1003:     aes_int_key prf_key;
                   1004:
                   1005:     ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
                   1006:     if (ctx) {
                   1007:         if (ALLOC_BOUNDARY) {
                   1008:             bytes_to_add = ALLOC_BOUNDARY -
                   1009:                               ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1));
                   1010:             ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add);
                   1011:             *((u_char *)ctx - 1) = bytes_to_add;
                   1012:         }
                   1013:         aes_key_setup(key,prf_key);
                   1014:         uhash_init(ctx, prf_key);
                   1015:     }
                   1016:     return (ctx);
                   1017: }
                   1018: #endif
                   1019:
                   1020: /* ---------------------------------------------------------------------- */
                   1021:
                   1022: #if 0
                   1023: static int uhash_free(uhash_ctx_t ctx)
                   1024: {
                   1025: /* Free memory allocated by uhash_alloc */
                   1026:     u_char bytes_to_sub;
                   1027:
                   1028:     if (ctx) {
                   1029:         if (ALLOC_BOUNDARY) {
                   1030:             bytes_to_sub = *((u_char *)ctx - 1);
                   1031:             ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub);
                   1032:         }
                   1033:         free(ctx);
                   1034:     }
                   1035:     return (1);
                   1036: }
                   1037: #endif
                   1038: /* ---------------------------------------------------------------------- */
                   1039:
1.7       djm      1040: static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len)
1.1       pvalchev 1041: /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
                   1042:  * hash each one with NH, calling the polyhash on each NH output.
                   1043:  */
                   1044: {
                   1045:     UWORD bytes_hashed, bytes_remaining;
1.3       pvalchev 1046:     UINT64 result_buf[STREAMS];
                   1047:     UINT8 *nh_result = (UINT8 *)&result_buf;
1.1       pvalchev 1048:
                   1049:     if (ctx->msg_len + len <= L1_KEY_LEN) {
1.7       djm      1050:         nh_update(&ctx->hash, (const UINT8 *)input, len);
1.1       pvalchev 1051:         ctx->msg_len += len;
                   1052:     } else {
                   1053:
                   1054:          bytes_hashed = ctx->msg_len % L1_KEY_LEN;
                   1055:          if (ctx->msg_len == L1_KEY_LEN)
                   1056:              bytes_hashed = L1_KEY_LEN;
                   1057:
                   1058:          if (bytes_hashed + len >= L1_KEY_LEN) {
                   1059:
                   1060:              /* If some bytes have been passed to the hash function      */
                   1061:              /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
                   1062:              /* bytes to complete the current nh_block.                  */
                   1063:              if (bytes_hashed) {
                   1064:                  bytes_remaining = (L1_KEY_LEN - bytes_hashed);
1.7       djm      1065:                  nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining);
1.1       pvalchev 1066:                  nh_final(&ctx->hash, nh_result);
                   1067:                  ctx->msg_len += bytes_remaining;
                   1068:                  poly_hash(ctx,(UINT32 *)nh_result);
                   1069:                  len -= bytes_remaining;
                   1070:                  input += bytes_remaining;
                   1071:              }
                   1072:
                   1073:              /* Hash directly from input stream if enough bytes */
                   1074:              while (len >= L1_KEY_LEN) {
1.7       djm      1075:                  nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN,
1.1       pvalchev 1076:                                    L1_KEY_LEN, nh_result);
                   1077:                  ctx->msg_len += L1_KEY_LEN;
                   1078:                  len -= L1_KEY_LEN;
                   1079:                  input += L1_KEY_LEN;
                   1080:                  poly_hash(ctx,(UINT32 *)nh_result);
                   1081:              }
                   1082:          }
                   1083:
                   1084:          /* pass remaining < L1_KEY_LEN bytes of input data to NH */
                   1085:          if (len) {
1.7       djm      1086:              nh_update(&ctx->hash, (const UINT8 *)input, len);
1.1       pvalchev 1087:              ctx->msg_len += len;
                   1088:          }
                   1089:      }
                   1090:
                   1091:     return (1);
                   1092: }
                   1093:
                   1094: /* ---------------------------------------------------------------------- */
                   1095:
                   1096: static int uhash_final(uhash_ctx_t ctx, u_char *res)
                   1097: /* Incorporate any pending data, pad, and generate tag */
                   1098: {
1.3       pvalchev 1099:     UINT64 result_buf[STREAMS];
                   1100:     UINT8 *nh_result = (UINT8 *)&result_buf;
1.1       pvalchev 1101:
                   1102:     if (ctx->msg_len > L1_KEY_LEN) {
                   1103:         if (ctx->msg_len % L1_KEY_LEN) {
                   1104:             nh_final(&ctx->hash, nh_result);
                   1105:             poly_hash(ctx,(UINT32 *)nh_result);
                   1106:         }
                   1107:         ip_long(ctx, res);
                   1108:     } else {
                   1109:         nh_final(&ctx->hash, nh_result);
                   1110:         ip_short(ctx,nh_result, res);
                   1111:     }
                   1112:     uhash_reset(ctx);
                   1113:     return (1);
                   1114: }
                   1115:
                   1116: /* ---------------------------------------------------------------------- */
                   1117:
                   1118: #if 0
                   1119: static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
                   1120: /* assumes that msg is in a writable buffer of length divisible by */
                   1121: /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed.           */
                   1122: {
                   1123:     UINT8 nh_result[STREAMS*sizeof(UINT64)];
                   1124:     UINT32 nh_len;
                   1125:     int extra_zeroes_needed;
                   1126:
                   1127:     /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
                   1128:      * the polyhash.
                   1129:      */
                   1130:     if (len <= L1_KEY_LEN) {
                   1131:        if (len == 0)                  /* If zero length messages will not */
                   1132:                nh_len = L1_PAD_BOUNDARY;  /* be seen, comment out this case   */
                   1133:        else
                   1134:                nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
                   1135:         extra_zeroes_needed = nh_len - len;
                   1136:         zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
                   1137:         nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
                   1138:         ip_short(ahc,nh_result, res);
                   1139:     } else {
                   1140:         /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
                   1141:          * output to poly_hash().
                   1142:          */
                   1143:         do {
                   1144:             nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result);
                   1145:             poly_hash(ahc,(UINT32 *)nh_result);
                   1146:             len -= L1_KEY_LEN;
                   1147:             msg += L1_KEY_LEN;
                   1148:         } while (len >= L1_KEY_LEN);
                   1149:         if (len) {
                   1150:             nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
                   1151:             extra_zeroes_needed = nh_len - len;
                   1152:             zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
                   1153:             nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
                   1154:             poly_hash(ahc,(UINT32 *)nh_result);
                   1155:         }
                   1156:
                   1157:         ip_long(ahc, res);
                   1158:     }
                   1159:
                   1160:     uhash_reset(ahc);
                   1161:     return 1;
                   1162: }
                   1163: #endif
                   1164:
                   1165: /* ---------------------------------------------------------------------- */
                   1166: /* ---------------------------------------------------------------------- */
                   1167: /* ----- Begin UMAC Section --------------------------------------------- */
                   1168: /* ---------------------------------------------------------------------- */
                   1169: /* ---------------------------------------------------------------------- */
                   1170:
                   1171: /* The UMAC interface has two interfaces, an all-at-once interface where
                   1172:  * the entire message to be authenticated is passed to UMAC in one buffer,
                   1173:  * and a sequential interface where the message is presented a little at a
                   1174:  * time. The all-at-once is more optimaized than the sequential version and
                   1175:  * should be preferred when the sequential interface is not required.
                   1176:  */
                   1177: struct umac_ctx {
                   1178:     uhash_ctx hash;          /* Hash function for message compression    */
                   1179:     pdf_ctx pdf;             /* PDF for hashed output                    */
                   1180:     void *free_ptr;          /* Address to free this struct via          */
                   1181: } umac_ctx;
                   1182:
                   1183: /* ---------------------------------------------------------------------- */
                   1184:
                   1185: #if 0
                   1186: int umac_reset(struct umac_ctx *ctx)
                   1187: /* Reset the hash function to begin a new authentication.        */
                   1188: {
                   1189:     uhash_reset(&ctx->hash);
                   1190:     return (1);
                   1191: }
                   1192: #endif
                   1193:
                   1194: /* ---------------------------------------------------------------------- */
                   1195:
                   1196: int umac_delete(struct umac_ctx *ctx)
                   1197: /* Deallocate the ctx structure */
                   1198: {
                   1199:     if (ctx) {
                   1200:         if (ALLOC_BOUNDARY)
                   1201:             ctx = (struct umac_ctx *)ctx->free_ptr;
1.5       djm      1202:         free(ctx);
1.1       pvalchev 1203:     }
                   1204:     return (1);
                   1205: }
                   1206:
                   1207: /* ---------------------------------------------------------------------- */
                   1208:
1.7       djm      1209: struct umac_ctx *umac_new(const u_char key[])
1.1       pvalchev 1210: /* Dynamically allocate a umac_ctx struct, initialize variables,
                   1211:  * generate subkeys from key. Align to 16-byte boundary.
                   1212:  */
                   1213: {
                   1214:     struct umac_ctx *ctx, *octx;
                   1215:     size_t bytes_to_add;
                   1216:     aes_int_key prf_key;
                   1217:
1.8     ! djm      1218:     octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY);
1.1       pvalchev 1219:     if (ctx) {
                   1220:         if (ALLOC_BOUNDARY) {
                   1221:             bytes_to_add = ALLOC_BOUNDARY -
                   1222:                               ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1));
                   1223:             ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add);
                   1224:         }
                   1225:         ctx->free_ptr = octx;
1.7       djm      1226:         aes_key_setup(key, prf_key);
1.1       pvalchev 1227:         pdf_init(&ctx->pdf, prf_key);
                   1228:         uhash_init(&ctx->hash, prf_key);
                   1229:     }
                   1230:
                   1231:     return (ctx);
                   1232: }
                   1233:
                   1234: /* ---------------------------------------------------------------------- */
                   1235:
1.7       djm      1236: int umac_final(struct umac_ctx *ctx, u_char tag[], const u_char nonce[8])
1.1       pvalchev 1237: /* Incorporate any pending data, pad, and generate tag */
                   1238: {
                   1239:     uhash_final(&ctx->hash, (u_char *)tag);
1.7       djm      1240:     pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag);
1.1       pvalchev 1241:
                   1242:     return (1);
                   1243: }
                   1244:
                   1245: /* ---------------------------------------------------------------------- */
                   1246:
1.7       djm      1247: int umac_update(struct umac_ctx *ctx, const u_char *input, long len)
1.1       pvalchev 1248: /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and   */
                   1249: /* hash each one, calling the PDF on the hashed output whenever the hash- */
                   1250: /* output buffer is full.                                                 */
                   1251: {
                   1252:     uhash_update(&ctx->hash, input, len);
                   1253:     return (1);
                   1254: }
                   1255:
                   1256: /* ---------------------------------------------------------------------- */
                   1257:
                   1258: #if 0
                   1259: int umac(struct umac_ctx *ctx, u_char *input,
                   1260:          long len, u_char tag[],
                   1261:          u_char nonce[8])
                   1262: /* All-in-one version simply calls umac_update() and umac_final().        */
                   1263: {
                   1264:     uhash(&ctx->hash, input, len, (u_char *)tag);
                   1265:     pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
                   1266:
                   1267:     return (1);
                   1268: }
                   1269: #endif
                   1270:
                   1271: /* ---------------------------------------------------------------------- */
                   1272: /* ---------------------------------------------------------------------- */
                   1273: /* ----- End UMAC Section ----------------------------------------------- */
                   1274: /* ---------------------------------------------------------------------- */
                   1275: /* ---------------------------------------------------------------------- */