[BACK]Return to pftop.c CVS log [TXT][DIR] Up to [local] / src / usr.bin / systat

Annotation of src/usr.bin/systat/pftop.c, Revision 1.4

1.4     ! canacar     1: /* $Id: pftop.c,v 1.3 2008/06/29 08:42:15 mcbride Exp $         */
1.1       canacar     2: /*
                      3:  * Copyright (c) 2001, 2007 Can Erkin Acar
                      4:  * Copyright (c) 2001 Daniel Hartmeier
                      5:  * All rights reserved.
                      6:  *
                      7:  * Redistribution and use in source and binary forms, with or without
                      8:  * modification, are permitted provided that the following conditions
                      9:  * are met:
                     10:  *
                     11:  *    - Redistributions of source code must retain the above copyright
                     12:  *      notice, this list of conditions and the following disclaimer.
                     13:  *    - Redistributions in binary form must reproduce the above
                     14:  *      copyright notice, this list of conditions and the following
                     15:  *      disclaimer in the documentation and/or other materials provided
                     16:  *      with the distribution.
                     17:  *
                     18:  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
                     19:  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
                     20:  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
                     21:  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
                     22:  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
                     23:  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
                     24:  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
                     25:  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
                     26:  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
                     27:  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
                     28:  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
                     29:  * POSSIBILITY OF SUCH DAMAGE.
                     30:  *
                     31:  */
                     32:
                     33: #include <sys/types.h>
                     34: #include <sys/ioctl.h>
                     35: #include <sys/socket.h>
                     36:
                     37: #include <net/if.h>
                     38: #include <netinet/in.h>
                     39: #include <netinet/tcp_fsm.h>
                     40: #include <net/pfvar.h>
                     41: #include <arpa/inet.h>
                     42:
                     43: #include <altq/altq.h>
                     44: #include <altq/altq_cbq.h>
                     45: #include <altq/altq_priq.h>
                     46: #include <altq/altq_hfsc.h>
                     47:
                     48: #include <ctype.h>
                     49: #include <curses.h>
                     50: #include <err.h>
                     51: #include <errno.h>
                     52: #include <fcntl.h>
                     53: #include <netdb.h>
                     54: #include <signal.h>
                     55: #include <stdio.h>
                     56: #include <stdlib.h>
                     57: #include <string.h>
                     58: #include <unistd.h>
                     59: #include <stdarg.h>
                     60:
                     61: #include "engine.h"
                     62: #include "cache.h"
                     63:
                     64: extern const char *tcpstates[];
                     65:
                     66: #define MIN_NUM_STATES 1024
                     67: #define NUM_STATE_INC  1024
                     68:
                     69: #define DEFAULT_CACHE_SIZE 10000
                     70:
                     71: /* XXX must also check type before use */
                     72: #define PT_ADDR(x) (&(x)->addr.v.a.addr)
                     73:
                     74: /* XXX must also check type before use */
                     75: #define PT_MASK(x) (&(x)->addr.v.a.mask)
                     76:
                     77: #define PT_NOROUTE(x) ((x)->addr.type == PF_ADDR_NOROUTE)
                     78:
                     79: /* view management */
                     80: int select_states(void);
                     81: int read_states(void);
                     82: void sort_states(void);
                     83: void print_states(void);
                     84:
                     85: int select_rules(void);
                     86: int read_rules(void);
                     87: void print_rules(void);
                     88:
                     89: int print_header(void);
                     90: int keyboard_callback(int ch);
                     91:
                     92: int select_queues(void);
                     93: int read_queues(void);
                     94: void print_queues(void);
                     95:
                     96: /* qsort callbacks */
                     97: int sort_size_callback(const void *s1, const void *s2);
                     98: int sort_exp_callback(const void *s1, const void *s2);
                     99: int sort_pkt_callback(const void *s1, const void *s2);
                    100: int sort_age_callback(const void *s1, const void *s2);
                    101: int sort_sa_callback(const void *s1, const void *s2);
                    102: int sort_sp_callback(const void *s1, const void *s2);
                    103: int sort_da_callback(const void *s1, const void *s2);
                    104: int sort_dp_callback(const void *s1, const void *s2);
                    105: int sort_rate_callback(const void *s1, const void *s2);
                    106: int sort_peak_callback(const void *s1, const void *s2);
                    107: int pf_dev = -1;
                    108:
                    109: struct sc_ent **state_cache = NULL;
1.4     ! canacar   110: struct pfsync_state *state_buf = NULL;
1.1       canacar   111: int state_buf_len = 0;
                    112: u_int32_t *state_ord = NULL;
                    113: u_int32_t num_states = 0;
                    114: u_int32_t num_states_all = 0;
                    115: u_int32_t num_rules = 0;
                    116: u_int32_t num_queues = 0;
                    117: int cachestates = 0;
                    118:
                    119: char *filter_string = NULL;
                    120: int dumpfilter = 0;
                    121:
                    122: #define MIN_LABEL_SIZE 5
                    123: #define ANCHOR_FLD_SIZE 12
                    124:
                    125: /* Define fields */
                    126: field_def fields[] = {
                    127:        {"SRC", 20, 45, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
                    128:        {"DEST", 20, 45, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
                    129:        {"GW", 20, 45, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
                    130:        {"STATE", 5, 23, 18, FLD_ALIGN_COLUMN, -1, 0, 0, 0},
                    131:        {"AGE", 5, 9, 4, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
                    132:        {"EXP", 5, 9, 4, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
                    133:        {"PR ", 4, 9, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
                    134:        {"DIR", 1, 3, 2, FLD_ALIGN_CENTER, -1, 0, 0, 0},
                    135:        {"PKTS", 5, 8, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
                    136:        {"BYTES", 5, 8, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
                    137:        {"RULE", 2, 4, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
                    138:        {"LABEL", MIN_LABEL_SIZE, MIN_LABEL_SIZE, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
                    139:        {"STATES", 5, 8, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
                    140:        {"EVAL", 5, 8, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
                    141:        {"ACTION", 1, 8, 4, FLD_ALIGN_LEFT, -1, 0, 0, 0},
                    142:        {"LOG", 1, 3, 2, FLD_ALIGN_LEFT, -1, 0, 0, 0},
                    143:        {"QUICK", 1, 1, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
                    144:        {"KS", 1, 1, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
                    145:        {"IF", 4, 6, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
                    146:        {"INFO", 40, 80, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
1.4     ! canacar   147:        {"MAX", 3, 5, 2, FLD_ALIGN_RIGHT, -1, 0, 0},
1.1       canacar   148:        {"RATE", 5, 8, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
                    149:        {"AVG", 5, 8, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
                    150:        {"PEAK", 5, 8, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
1.4     ! canacar   151:        {"ANCHOR", 6, 16, 1, FLD_ALIGN_LEFT, -1, 0, 0},
1.1       canacar   152:        {"QUEUE", 15, 30, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
                    153:        {"BW", 4, 5, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
                    154:        {"SCH", 3, 4, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
                    155:        {"PRIO", 1, 4, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
                    156:        {"DROP_P", 6, 8, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
                    157:        {"DROP_B", 6, 8, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
                    158:        {"QLEN", 4, 4, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
                    159:        {"BORROW", 4, 6, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
                    160:        {"SUSPENDS", 4, 6, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
                    161:        {"P/S", 3, 7, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
                    162:        {"B/S", 4, 7, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0}
                    163: };
                    164:
                    165:
                    166: #define FIELD_ADDR(x) (&fields[x])
                    167:
                    168: /* for states */
                    169: #define FLD_SRC     FIELD_ADDR(0)
                    170: #define FLD_DEST    FIELD_ADDR(1)
                    171: #define FLD_GW      FIELD_ADDR(2)
                    172: #define FLD_STATE   FIELD_ADDR(3)
                    173: #define FLD_AGE     FIELD_ADDR(4)
                    174: #define FLD_EXP     FIELD_ADDR(5)
                    175: /* common */
                    176: #define FLD_PROTO   FIELD_ADDR(6)
                    177: #define FLD_DIR     FIELD_ADDR(7)
                    178: #define FLD_PKTS    FIELD_ADDR(8)
                    179: #define FLD_BYTES   FIELD_ADDR(9)
                    180: #define FLD_RULE    FIELD_ADDR(10)
                    181: /* for rules */
                    182: #define FLD_LABEL   FIELD_ADDR(11)
                    183: #define FLD_STATS   FIELD_ADDR(12)
                    184: #define FLD_EVAL    FIELD_ADDR(13)
                    185: #define FLD_ACTION  FIELD_ADDR(14)
                    186: #define FLD_LOG     FIELD_ADDR(15)
                    187: #define FLD_QUICK   FIELD_ADDR(16)
                    188: #define FLD_KST     FIELD_ADDR(17)
                    189: #define FLD_IF      FIELD_ADDR(18)
                    190: #define FLD_RINFO   FIELD_ADDR(19)
                    191: #define FLD_STMAX   FIELD_ADDR(20)
                    192: /* other */
                    193: #define FLD_SI      FIELD_ADDR(21)    /* instantaneous speed */
                    194: #define FLD_SA      FIELD_ADDR(22)    /* average speed */
                    195: #define FLD_SP      FIELD_ADDR(23)    /* peak speed */
                    196: #define FLD_ANCHOR  FIELD_ADDR(24)
                    197: /* for queues */
                    198: #define FLD_QUEUE   FIELD_ADDR(25)
                    199: #define FLD_BANDW   FIELD_ADDR(26)
                    200: #define FLD_SCHED   FIELD_ADDR(27)
                    201: #define FLD_PRIO    FIELD_ADDR(28)
                    202: #define FLD_DROPP   FIELD_ADDR(29)
                    203: #define FLD_DROPB   FIELD_ADDR(30)
                    204: #define FLD_QLEN    FIELD_ADDR(31)
                    205: #define FLD_BORR    FIELD_ADDR(32)
                    206: #define FLD_SUSP    FIELD_ADDR(33)
                    207: #define FLD_PKTSPS  FIELD_ADDR(34)
                    208: #define FLD_BYTESPS FIELD_ADDR(35)
                    209:
                    210: /* Define views */
                    211: field_def *view0[] = {
                    212:        FLD_PROTO, FLD_DIR, FLD_SRC, FLD_DEST, FLD_STATE,
                    213:        FLD_AGE, FLD_EXP, FLD_PKTS, FLD_BYTES, NULL
                    214: };
                    215:
                    216: field_def *view1[] = {
                    217:        FLD_PROTO, FLD_DIR, FLD_SRC, FLD_DEST, FLD_GW, FLD_STATE, FLD_AGE,
                    218:        FLD_EXP, FLD_PKTS, FLD_BYTES, FLD_SI, FLD_SP, FLD_SA, FLD_RULE, NULL
                    219: };
                    220:
                    221: field_def *view2[] = {
                    222:        FLD_PROTO, FLD_DIR, FLD_SRC, FLD_DEST, FLD_STATE, FLD_AGE, FLD_EXP,
                    223:        FLD_PKTS, FLD_BYTES, FLD_SI, FLD_SP, FLD_SA, FLD_RULE, FLD_GW, NULL
                    224: };
                    225:
                    226: field_def *view3[] = {
                    227:        FLD_PROTO, FLD_DIR, FLD_SRC, FLD_DEST, FLD_AGE, FLD_EXP, FLD_PKTS,
                    228:        FLD_BYTES, FLD_STATE, FLD_SI, FLD_SP, FLD_SA, FLD_RULE, FLD_GW, NULL
                    229: };
                    230:
                    231: field_def *view4[] = {
                    232:        FLD_PROTO, FLD_DIR, FLD_SRC, FLD_DEST, FLD_PKTS, FLD_BYTES, FLD_STATE,
                    233:        FLD_AGE, FLD_EXP, FLD_SI, FLD_SP, FLD_SA, FLD_RULE, FLD_GW, NULL
                    234: };
                    235:
                    236: field_def *view5[] = {
                    237:        FLD_RULE, FLD_ANCHOR, FLD_ACTION, FLD_DIR, FLD_LOG, FLD_QUICK, FLD_IF,
                    238:        FLD_PROTO, FLD_KST, FLD_PKTS, FLD_BYTES, FLD_STATS, FLD_STMAX,
                    239:        FLD_RINFO, NULL
                    240: };
                    241:
                    242: field_def *view6[] = {
                    243:        FLD_RULE, FLD_LABEL, FLD_PKTS, FLD_BYTES, FLD_STATS, FLD_STMAX,
                    244:        FLD_ACTION, FLD_DIR, FLD_LOG, FLD_QUICK, FLD_IF, FLD_PROTO,
                    245:        FLD_ANCHOR, FLD_KST, NULL
                    246: };
                    247:
                    248: field_def *view7[] = {
                    249:        FLD_PROTO, FLD_DIR, FLD_SRC, FLD_DEST,  FLD_SI, FLD_SP, FLD_SA,
                    250:        FLD_BYTES, FLD_STATE, FLD_PKTS, FLD_AGE, FLD_EXP, FLD_RULE, FLD_GW, NULL
                    251: };
                    252:
                    253: field_def *view8[] = {
                    254:        FLD_QUEUE, FLD_BANDW, FLD_SCHED, FLD_PRIO, FLD_PKTS, FLD_BYTES,
                    255:        FLD_DROPP, FLD_DROPB, FLD_QLEN, FLD_BORR, FLD_SUSP, FLD_PKTSPS,
                    256:        FLD_BYTESPS, NULL
                    257: };
                    258:
                    259: /* Define orderings */
                    260: order_type order_list[] = {
                    261:        {"none", "none", 'N', NULL},
                    262:        {"bytes", "bytes", 'B', sort_size_callback},
                    263:        {"expiry", "exp", 'E', sort_exp_callback},
                    264:        {"packets", "pkt", 'P', sort_pkt_callback},
                    265:        {"age", "age", 'A', sort_age_callback},
                    266:        {"source addr", "src", 'F', sort_sa_callback},
                    267:        {"dest. addr", "dest", 'T', sort_da_callback},
                    268:        {"source port", "sport", 'S', sort_sp_callback},
                    269:        {"dest. port", "dport", 'D', sort_dp_callback},
                    270:        {"rate", "rate", 'R', sort_rate_callback},
                    271:        {"peak", "peak", 'K', sort_peak_callback},
                    272:        {NULL, NULL, 0, NULL}
                    273: };
                    274:
                    275: /* Define view managers */
                    276: struct view_manager state_mgr = {
                    277:        "States", select_states, read_states, sort_states, print_header,
                    278:        print_states, keyboard_callback, order_list, NULL
                    279: };
                    280:
                    281: struct view_manager rule_mgr = {
                    282:        "Rules", select_rules, read_rules, NULL, print_header,
                    283:        print_rules, keyboard_callback, NULL, NULL
                    284: };
                    285:
                    286: struct view_manager queue_mgr = {
                    287:        "Queues", select_queues, read_queues, NULL, print_header,
                    288:        print_queues, keyboard_callback, NULL, NULL
                    289: };
                    290:
                    291: field_view views[] = {
                    292:        {view2, "states", '8', &state_mgr},
                    293:        {view5, "rules", '9', &rule_mgr},
                    294:        {view8, "queues", 'Q', &queue_mgr},
                    295:        {NULL, NULL, 0, NULL}
                    296: };
                    297:
                    298:
                    299: /* altq structures from pfctl */
                    300:
                    301: union class_stats {
                    302:        class_stats_t           cbq_stats;
                    303:        struct priq_classstats  priq_stats;
                    304:        struct hfsc_classstats  hfsc_stats;
                    305: };
                    306:
                    307: struct queue_stats {
                    308:        union class_stats        data;
                    309:        struct timeval           timestamp;
                    310:        u_int8_t                 valid;
                    311: };
                    312:
                    313: struct pf_altq_node {
                    314:        struct pf_altq           altq;
                    315:        struct pf_altq_node     *next;
                    316:        struct pf_altq_node     *children;
                    317:        struct pf_altq_node     *next_flat;
                    318:        struct queue_stats       qstats;
                    319:        struct queue_stats       qstats_last;
                    320:        u_int8_t                 depth;
                    321:        u_int8_t                 visited;
                    322: };
                    323:
                    324:
                    325: /* ordering functions */
                    326:
                    327: int
                    328: sort_size_callback(const void *s1, const void *s2)
                    329: {
                    330:        u_int64_t b1 = COUNTER(state_buf[* (u_int32_t *) s1].bytes[0]) +
                    331:                COUNTER(state_buf[* (u_int32_t *) s1].bytes[1]);
                    332:        u_int64_t b2 = COUNTER(state_buf[* (u_int32_t *) s2].bytes[0]) +
                    333:                COUNTER(state_buf[* (u_int32_t *) s2].bytes[1]);
                    334:        if (b2 > b1)
                    335:                return sortdir;
                    336:        if (b2 < b1)
                    337:                return -sortdir;
                    338:        return 0;
                    339: }
                    340:
                    341: int
                    342: sort_pkt_callback(const void *s1, const void *s2)
                    343: {
                    344:        u_int64_t p1 = COUNTER(state_buf[* (u_int32_t *) s1].packets[0]) +
                    345:                COUNTER(state_buf[* (u_int32_t *) s1].packets[1]);
                    346:        u_int64_t p2 = COUNTER(state_buf[* (u_int32_t *) s2].packets[0]) +
                    347:                COUNTER(state_buf[* (u_int32_t *) s2].packets[1]);
                    348:        if (p2 > p1)
                    349:                return sortdir;
                    350:        if (p2 < p1)
                    351:                return -sortdir;
                    352:        return 0;
                    353: }
                    354:
                    355: int
                    356: sort_age_callback(const void *s1, const void *s2)
                    357: {
1.3       mcbride   358:        if (ntohl(state_buf[* (u_int32_t *) s2].creation) >
                    359:            ntohl(state_buf[* (u_int32_t *) s1].creation))
1.1       canacar   360:                return sortdir;
1.3       mcbride   361:        if (ntohl(state_buf[* (u_int32_t *) s2].creation) <
                    362:            ntohl(state_buf[* (u_int32_t *) s1].creation))
1.1       canacar   363:                return -sortdir;
                    364:        return 0;
                    365: }
                    366:
                    367: int
                    368: sort_exp_callback(const void *s1, const void *s2)
                    369: {
1.3       mcbride   370:        if (ntohl(state_buf[* (u_int32_t *) s2].expire) >
                    371:            ntohl(state_buf[* (u_int32_t *) s1].expire))
1.1       canacar   372:                return sortdir;
1.3       mcbride   373:        if (ntohl(state_buf[* (u_int32_t *) s2].expire) <
                    374:            ntohl(state_buf[* (u_int32_t *) s1].expire))
1.1       canacar   375:                return -sortdir;
                    376:        return 0;
                    377: }
                    378:
                    379: int
                    380: sort_rate_callback(const void *s1, const void *s2)
                    381: {
                    382:        struct sc_ent *e1 = state_cache[* (u_int32_t *) s1];
                    383:        struct sc_ent *e2 = state_cache[* (u_int32_t *) s2];
                    384:
                    385:        if (e1 == NULL)
                    386:                return sortdir;
                    387:        if (e2 == NULL)
                    388:                return -sortdir;
                    389:
                    390:        if (e2->rate > e1 -> rate)
                    391:                return sortdir;
                    392:        if (e2->rate < e1 -> rate)
                    393:                return -sortdir;
                    394:        return 0;
                    395: }
                    396:
                    397: int
                    398: sort_peak_callback(const void *s1, const void *s2)
                    399: {
                    400:        struct sc_ent *e1 = state_cache[* (u_int32_t *) s1];
                    401:        struct sc_ent *e2 = state_cache[* (u_int32_t *) s2];
                    402:
                    403:        if (e2 == NULL)
                    404:                return -sortdir;
                    405:        if (e1 == NULL || e2 == NULL)
                    406:                return 0;
                    407:
                    408:        if (e2->peak > e1 -> peak)
                    409:                return sortdir;
                    410:        if (e2->peak < e1 -> peak)
                    411:                return -sortdir;
                    412:        return 0;
                    413: }
                    414:
                    415: int
                    416: compare_addr(int af, const struct pf_addr *a, const struct pf_addr *b)
                    417: {
                    418:        switch (af) {
                    419:        case AF_INET:
                    420:                if (ntohl(a->addr32[0]) > ntohl(b->addr32[0]))
                    421:                        return 1;
                    422:                if (a->addr32[0] != b->addr32[0])
                    423:                        return -1;
                    424:                break;
                    425:        case AF_INET6:
                    426:                if (ntohl(a->addr32[0]) > ntohl(b->addr32[0]))
                    427:                        return 1;
                    428:                if (a->addr32[0] != b->addr32[0])
                    429:                        return -1;
                    430:                if (ntohl(a->addr32[1]) > ntohl(b->addr32[1]))
                    431:                        return 1;
                    432:                if (a->addr32[1] != b->addr32[1])
                    433:                        return -1;
                    434:                if (ntohl(a->addr32[2]) > ntohl(b->addr32[2]))
                    435:                        return 1;
                    436:                if (a->addr32[2] != b->addr32[2])
                    437:                        return -1;
                    438:                if (ntohl(a->addr32[3]) > ntohl(b->addr32[3]))
                    439:                        return 1;
                    440:                if (a->addr32[3] != b->addr32[3])
                    441:                        return -1;
                    442:                break;
                    443:        }
                    444:
                    445:        return 0;
                    446: }
                    447:
1.4     ! canacar   448: __inline int
        !           449: sort_addr_callback(const struct pfsync_state *s1,
        !           450:                   const struct pfsync_state *s2, int dir)
1.1       canacar   451: {
                    452:        const struct pf_addr *aa, *ab;
                    453:        u_int16_t pa, pb;
                    454:        int af, ret, ii, io;
                    455:
                    456:        af = s1->af;
                    457:
                    458:        if (af > s2->af)
                    459:                return sortdir;
                    460:        if (af < s2->af)
                    461:                return -sortdir;
                    462:
                    463:                ii = io = 0;
                    464:
                    465:        if (dir == PF_OUT)      /* looking for source addr */
                    466:                io = 1;
                    467:        else                    /* looking for dest addr */
                    468:                ii = 1;
                    469:
                    470:        if (s1->direction == PF_IN) {
                    471:                aa = &s1->key[PF_SK_STACK].addr[ii];
                    472:                pa =  s1->key[PF_SK_STACK].port[ii];
                    473:        } else {
                    474:                aa = &s1->key[PF_SK_WIRE].addr[io];
                    475:                pa =  s1->key[PF_SK_WIRE].port[io];
                    476:        }
                    477:
                    478:        if (s2->direction == PF_IN) {
                    479:                ab = &s2->key[PF_SK_STACK].addr[ii];;
                    480:                pb =  s2->key[PF_SK_STACK].port[ii];
                    481:        } else {
                    482:                ab = &s2->key[PF_SK_WIRE].addr[io];;
                    483:                pb =  s2->key[PF_SK_WIRE].port[io];
                    484:        }
                    485:
                    486:        ret = compare_addr(af, aa, ab);
                    487:        if (ret)
                    488:                return ret * sortdir;
                    489:
                    490:        if (ntohs(pa) > ntohs(pb))
                    491:                return sortdir;
                    492:        return -sortdir;
                    493: }
                    494:
1.4     ! canacar   495: __inline int
        !           496: sort_port_callback(const struct pfsync_state *s1,
        !           497:                   const struct pfsync_state *s2, int dir)
1.1       canacar   498: {
                    499:        const struct pf_addr *aa, *ab;
                    500:        u_int16_t pa, pb;
                    501:        int af, ret, ii, io;
                    502:
                    503:        af = s1->af;
                    504:
                    505:
                    506:        if (af > s2->af)
                    507:                return sortdir;
                    508:        if (af < s2->af)
                    509:                return -sortdir;
                    510:
                    511:                ii = io = 0;
                    512:
                    513:        if (dir == PF_OUT)      /* looking for source addr */
                    514:                io = 1;
                    515:        else                    /* looking for dest addr */
                    516:                ii = 1;
                    517:
                    518:        if (s1->direction == PF_IN) {
                    519:                aa = &s1->key[PF_SK_STACK].addr[ii];
                    520:                pa =  s1->key[PF_SK_STACK].port[ii];
                    521:        } else {
                    522:                aa = &s1->key[PF_SK_WIRE].addr[io];
                    523:                pa =  s1->key[PF_SK_WIRE].port[io];
                    524:        }
                    525:
                    526:        if (s2->direction == PF_IN) {
                    527:                ab = &s2->key[PF_SK_STACK].addr[ii];;
                    528:                pb =  s2->key[PF_SK_STACK].port[ii];
                    529:        } else {
                    530:                ab = &s2->key[PF_SK_WIRE].addr[io];;
                    531:                pb =  s2->key[PF_SK_WIRE].port[io];
                    532:        }
                    533:
                    534:
                    535:        if (ntohs(pa) > ntohs(pb))
                    536:                return sortdir;
                    537:        if (ntohs(pa) < ntohs(pb))
                    538:                return - sortdir;
                    539:
                    540:        ret = compare_addr(af, aa, ab);
                    541:        if (ret)
                    542:                return ret * sortdir;
                    543:        return -sortdir;
                    544: }
                    545:
                    546: int
1.4     ! canacar   547: sort_sa_callback(const void *p1, const void *p2)
1.1       canacar   548: {
1.4     ! canacar   549:        struct pfsync_state *s1 = state_buf + (* (u_int32_t *) p1);
        !           550:        struct pfsync_state *s2 = state_buf + (* (u_int32_t *) p2);
        !           551:        return sort_addr_callback(s1, s2, PF_OUT);
1.1       canacar   552: }
                    553:
                    554: int
1.4     ! canacar   555: sort_da_callback(const void *p1, const void *p2)
1.1       canacar   556: {
1.4     ! canacar   557:        struct pfsync_state *s1 = state_buf + (* (u_int32_t *) p1);
        !           558:        struct pfsync_state *s2 = state_buf + (* (u_int32_t *) p2);
1.1       canacar   559:        return sort_addr_callback(s1, s2, PF_IN);
                    560: }
                    561:
                    562: int
                    563: sort_sp_callback(const void *p1, const void *p2)
                    564: {
1.4     ! canacar   565:        struct pfsync_state *s1 = state_buf + (* (u_int32_t *) p1);
        !           566:        struct pfsync_state *s2 = state_buf + (* (u_int32_t *) p2);
1.1       canacar   567:        return sort_port_callback(s1, s2, PF_OUT);
                    568: }
                    569:
                    570: int
                    571: sort_dp_callback(const void *p1, const void *p2)
                    572: {
1.4     ! canacar   573:        struct pfsync_state *s1 = state_buf + (* (u_int32_t *) p1);
        !           574:        struct pfsync_state *s2 = state_buf + (* (u_int32_t *) p2);
1.1       canacar   575:        return sort_port_callback(s1, s2, PF_IN);
                    576: }
                    577:
                    578: void
                    579: sort_states(void)
                    580: {
                    581:        order_type *ordering;
                    582:
                    583:        if (curr_mgr == NULL)
                    584:                return;
                    585:
                    586:        ordering = curr_mgr->order_curr;
                    587:
                    588:        if (ordering == NULL)
                    589:                return;
                    590:        if (ordering->func == NULL)
                    591:                return;
                    592:        if (state_buf == NULL)
                    593:                return;
                    594:        if (num_states <= 0)
                    595:                return;
                    596:
                    597:        mergesort(state_ord, num_states, sizeof(u_int32_t), ordering->func);
                    598: }
                    599:
                    600: /* state management functions */
                    601:
                    602: void
                    603: alloc_buf(int ns)
                    604: {
                    605:        int len;
                    606:
                    607:        if (ns < MIN_NUM_STATES)
                    608:                ns = MIN_NUM_STATES;
                    609:
                    610:        len = ns;
                    611:
                    612:        if (len >= state_buf_len) {
                    613:                len += NUM_STATE_INC;
1.4     ! canacar   614:                state_buf = realloc(state_buf, len * sizeof(struct pfsync_state));
1.1       canacar   615:                state_ord = realloc(state_ord, len * sizeof(u_int32_t));
                    616:                state_cache = realloc(state_cache,
                    617:                                      len * sizeof(struct sc_ent *));
                    618:                if (state_buf == NULL || state_ord == NULL ||
                    619:                    state_cache == NULL)
                    620:                        err(1, "realloc");
                    621:                state_buf_len = len;
                    622:        }
                    623: }
                    624:
                    625: int
                    626: select_states(void)
                    627: {
                    628:        num_disp = num_states;
                    629:        return (0);
                    630: }
                    631:
                    632: int
                    633: read_states(void)
                    634: {
                    635:        struct pfioc_states ps;
                    636:        int n;
                    637:
                    638:        if (pf_dev == -1)
                    639:                return -1;
                    640:
                    641:        for (;;) {
1.4     ! canacar   642:                int sbytes = state_buf_len * sizeof(struct pfsync_state);
1.1       canacar   643:
                    644:                ps.ps_len = sbytes;
                    645:                ps.ps_buf = (char *) state_buf;
                    646:
                    647:                if (ioctl(pf_dev, DIOCGETSTATES, &ps) < 0) {
                    648:                        error("DIOCGETSTATES");
                    649:                }
1.4     ! canacar   650:                num_states_all = ps.ps_len / sizeof(struct pfsync_state);
1.1       canacar   651:
                    652:                if (ps.ps_len < sbytes)
                    653:                        break;
                    654:
                    655:                alloc_buf(num_states_all);
                    656:        }
                    657:
                    658:        if (dumpfilter) {
                    659:                int fd = open("state.dmp", O_WRONLY|O_CREAT|O_EXCL, 0);
                    660:                if (fd > 0) {
                    661:                        write(fd, state_buf, ps.ps_len);
                    662:                        close(fd);
                    663:                }
                    664:        }
                    665:
                    666:        num_states =  num_states_all;
                    667:        for (n = 0; n<num_states_all; n++)
                    668:                state_ord[n] = n;
                    669:
                    670:        if (cachestates) {
                    671:                for (n = 0; n < num_states; n++)
                    672:                        state_cache[n] = cache_state(state_buf + n);
                    673:                cache_endupdate();
                    674:        }
                    675:
                    676:        num_disp = num_states;
                    677:        return 0;
                    678: }
                    679:
                    680: int
                    681: unmask(struct pf_addr * m, u_int8_t af)
                    682: {
                    683:        int i = 31, j = 0, b = 0, msize;
                    684:        u_int32_t tmp;
                    685:
                    686:        if (af == AF_INET)
                    687:                msize = 1;
                    688:        else
                    689:                msize = 4;
                    690:        while (j < msize && m->addr32[j] == 0xffffffff) {
                    691:                b += 32;
                    692:                j++;
                    693:        }
                    694:        if (j < msize) {
                    695:                tmp = ntohl(m->addr32[j]);
                    696:                for (i = 31; tmp & (1 << i); --i)
                    697:                        b++;
                    698:        }
                    699:        return (b);
                    700: }
                    701:
                    702: /* display functions */
                    703:
                    704: void
                    705: tb_print_addr(struct pf_addr * addr, struct pf_addr * mask, int af)
                    706: {
                    707:        static char buf[48];
                    708:        const char *bf;
                    709:
                    710:        bf = inet_ntop(af, addr, buf, sizeof(buf));
                    711:        tbprintf("%s", bf);
                    712:
                    713:        if (mask != NULL) {
                    714:                if (!PF_AZERO(mask, af))
                    715:                        tbprintf("/%u", unmask(mask, af));
                    716:        }
                    717: }
1.4     ! canacar   718:
1.1       canacar   719: void
                    720: print_fld_host2(field_def *fld, struct pfsync_state_key *ks,
                    721:                struct pfsync_state_key *kn, int idx, int af)
                    722: {
                    723:        struct pf_addr *as = &ks->addr[idx];
                    724:        struct pf_addr *an = &kn->addr[idx];
                    725:
                    726:        u_int16_t ps = ntohs(ks->port[idx]);
                    727:        u_int16_t pn = ntohs(kn->port[idx]);
                    728:
                    729:        if (fld == NULL)
                    730:                return;
                    731:
                    732:        if (fld->width < 3) {
                    733:                print_fld_str(fld, "*");
                    734:                return;
                    735:        }
                    736:
                    737:        tb_start();
                    738:        tb_print_addr(as, NULL, af);
                    739:
                    740:        if (af == AF_INET)
                    741:                tbprintf(":%u", ps);
                    742:        else
                    743:                tbprintf("[%u]", ps);
                    744:
                    745:        print_fld_tb(fld);
                    746:
                    747:        if (PF_ANEQ(as, an, af) || ps != pn) {
                    748:                tb_start();
                    749:                tb_print_addr(an, NULL, af);
                    750:
                    751:                if (af == AF_INET)
                    752:                        tbprintf(":%u", pn);
                    753:                else
                    754:                        tbprintf("[%u]", pn);
                    755:                print_fld_tb(FLD_GW);
                    756:        }
                    757:
                    758: }
                    759:
                    760: void
                    761: print_fld_state(field_def *fld, unsigned int proto,
                    762:                unsigned int s1, unsigned int s2)
                    763: {
                    764:        int len;
                    765:
                    766:        if (fld == NULL)
                    767:                return;
                    768:
                    769:        len = fld->width;
                    770:        if (len < 1)
                    771:                return;
                    772:
                    773:        tb_start();
                    774:
                    775:        if (proto == IPPROTO_TCP) {
                    776:                if (s1 <= TCPS_TIME_WAIT && s2 <= TCPS_TIME_WAIT)
                    777:                        tbprintf("%s:%s", tcpstates[s1], tcpstates[s2]);
                    778: #ifdef PF_TCPS_PROXY_SRC
                    779:                else if (s1 == PF_TCPS_PROXY_SRC ||
                    780:                           s2 == PF_TCPS_PROXY_SRC)
                    781:                        tbprintf("PROXY:SRC\n");
                    782:                else if (s1 == PF_TCPS_PROXY_DST ||
                    783:                         s2 == PF_TCPS_PROXY_DST)
                    784:                        tbprintf("PROXY:DST\n");
                    785: #endif
                    786:                else
                    787:                        tbprintf("<BAD STATE LEVELS>");
                    788:        } else if (proto == IPPROTO_UDP && s1 < PFUDPS_NSTATES &&
                    789:                   s2 < PFUDPS_NSTATES) {
                    790:                const char *states[] = PFUDPS_NAMES;
                    791:                tbprintf("%s:%s", states[s1], states[s2]);
                    792:        } else if (proto != IPPROTO_ICMP && s1 < PFOTHERS_NSTATES &&
                    793:                   s2 < PFOTHERS_NSTATES) {
                    794:                /* XXX ICMP doesn't really have state levels */
                    795:                const char *states[] = PFOTHERS_NAMES;
                    796:                tbprintf("%s:%s", states[s1], states[s2]);
                    797:        } else {
                    798:                tbprintf("%u:%u", s1, s2);
                    799:        }
                    800:
                    801:        if (strlen(tmp_buf) > len) {
                    802:                tb_start();
                    803:                tbprintf("%u:%u", s1, s2);
                    804:        }
                    805:
                    806:        print_fld_tb(fld);
                    807: }
                    808:
                    809: int
1.4     ! canacar   810: print_state(struct pfsync_state * s, struct sc_ent * ent)
1.1       canacar   811: {
1.4     ! canacar   812:        struct pfsync_state_peer *src, *dst;
1.1       canacar   813:        struct protoent *p;
1.4     ! canacar   814:        u_int64_t sz;
1.1       canacar   815:
                    816:        if (s->direction == PF_OUT) {
                    817:                src = &s->src;
                    818:                dst = &s->dst;
                    819:        } else {
                    820:                src = &s->dst;
                    821:                dst = &s->src;
                    822:        }
                    823:
                    824:        p = getprotobynumber(s->proto);
                    825:
                    826:        if (p != NULL)
                    827:                print_fld_str(FLD_PROTO, p->p_name);
                    828:        else
                    829:                print_fld_uint(FLD_PROTO, s->proto);
                    830:
                    831:        if (s->direction == PF_OUT) {
                    832:                print_fld_host2(FLD_SRC, &s->key[PF_SK_WIRE],
                    833:                    &s->key[PF_SK_STACK], 1, s->af);
                    834:                print_fld_host2(FLD_DEST, &s->key[PF_SK_WIRE],
                    835:                    &s->key[PF_SK_STACK], 0, s->af);
                    836:        } else {
                    837:                print_fld_host2(FLD_SRC, &s->key[PF_SK_STACK],
                    838:                    &s->key[PF_SK_WIRE], 0, s->af);
                    839:                print_fld_host2(FLD_DEST, &s->key[PF_SK_STACK],
                    840:                    &s->key[PF_SK_WIRE], 1, s->af);
                    841:        }
                    842:
                    843:        if (s->direction == PF_OUT)
                    844:                print_fld_str(FLD_DIR, "Out");
                    845:        else
                    846:                print_fld_str(FLD_DIR, "In");
                    847:
                    848:        print_fld_state(FLD_STATE, s->proto, src->state, dst->state);
1.3       mcbride   849:        print_fld_age(FLD_AGE, ntohl(s->creation));
                    850:        print_fld_age(FLD_EXP, ntohl(s->expire));
1.4     ! canacar   851:
        !           852:        sz = COUNTER(s->bytes[0]) + COUNTER(s->bytes[1]);
        !           853:
        !           854:        print_fld_size(FLD_PKTS, COUNTER(s->packets[0]) +
        !           855:                       COUNTER(s->packets[1]));
        !           856:        print_fld_size(FLD_BYTES, sz);
1.3       mcbride   857:        print_fld_rate(FLD_SA, (s->creation) ?
1.4     ! canacar   858:                       ((double)sz/ntohl((double)s->creation)) : -1);
1.1       canacar   859:
                    860:        print_fld_uint(FLD_RULE, s->rule);
                    861:        if (cachestates && ent != NULL) {
                    862:                print_fld_rate(FLD_SI, ent->rate);
                    863:                print_fld_rate(FLD_SP, ent->peak);
                    864:        }
                    865:
                    866:        end_line();
                    867:        return 1;
                    868: }
                    869:
                    870: void
                    871: print_states(void)
                    872: {
                    873:        int n, count = 0;
                    874:
                    875:        for (n = dispstart; n < num_disp; n++) {
                    876:                count += print_state(state_buf + state_ord[n],
                    877:                                     state_cache[state_ord[n]]);
                    878:                if (maxprint > 0 && count >= maxprint)
                    879:                        break;
                    880:        }
                    881: }
                    882:
                    883: /* rule display */
                    884:
                    885: struct pf_rule *rules = NULL;
                    886: u_int32_t alloc_rules = 0;
                    887:
                    888: int
                    889: select_rules(void)
                    890: {
                    891:        num_disp = num_rules;
                    892:        return (0);
                    893: }
                    894:
                    895:
                    896: void
                    897: add_rule_alloc(u_int32_t nr)
                    898: {
                    899:        if (nr == 0)
                    900:                return;
                    901:
                    902:        num_rules += nr;
                    903:
                    904:        if (rules == NULL) {
                    905:                rules = malloc(num_rules * sizeof(struct pf_rule));
                    906:                if (rules == NULL)
                    907:                        err(1, "malloc");
                    908:                alloc_rules = num_rules;
                    909:        } else if (num_rules > alloc_rules) {
                    910:                rules = realloc(rules, num_rules * sizeof(struct pf_rule));
                    911:                if (rules == NULL)
                    912:                        err(1, "realloc");
                    913:                alloc_rules = num_rules;
                    914:        }
                    915: }
                    916:
                    917: int label_length;
                    918:
                    919: int
                    920: read_anchor_rules(char *anchor)
                    921: {
                    922:        struct pfioc_rule pr;
                    923:        u_int32_t nr, num, off;
1.4     ! canacar   924:        int len;
1.1       canacar   925:
                    926:        if (pf_dev < 0)
                    927:                return (-1);
                    928:
                    929:        memset(&pr, 0, sizeof(pr));
                    930:        strlcpy(pr.anchor, anchor, sizeof(pr.anchor));
1.4     ! canacar   931:
1.1       canacar   932:        if (ioctl(pf_dev, DIOCGETRULES, &pr)) {
                    933:                error("anchor %s: %s", anchor, strerror(errno));
                    934:                return (-1);
                    935:        }
                    936:
                    937:        off = num_rules;
                    938:        num = pr.nr;
                    939:        add_rule_alloc(num);
                    940:
                    941:        for (nr = 0; nr < num; ++nr) {
                    942:                pr.nr = nr;
                    943:                if (ioctl(pf_dev, DIOCGETRULE, &pr)) {
                    944:                        error("DIOCGETRULE: %s", strerror(errno));
                    945:                        return (-1);
                    946:                }
                    947:                /* XXX overload pr.anchor, to store a pointer to
                    948:                 * anchor name */
                    949:                pr.rule.anchor = (struct pf_anchor *) anchor;
1.4     ! canacar   950:                len = strlen(pr.rule.label);
        !           951:                if (len > label_length)
        !           952:                        label_length = len;
1.1       canacar   953:                rules[off + nr] = pr.rule;
                    954:        }
                    955:
                    956:        return (num);
                    957: }
                    958:
                    959: struct anchor_name {
                    960:        char name[MAXPATHLEN];
                    961:        struct anchor_name *next;
                    962:        u_int32_t ref;
                    963: };
                    964:
                    965: struct anchor_name *anchor_root = NULL;
                    966: struct anchor_name *anchor_end = NULL;
                    967: struct anchor_name *anchor_free = NULL;
                    968:
                    969: struct anchor_name*
                    970: alloc_anchor_name(const char *path)
                    971: {
                    972:        struct anchor_name *a;
                    973:
                    974:        a = anchor_free;
                    975:        if (a == NULL) {
                    976:                a = (struct anchor_name *)malloc(sizeof(struct anchor_name));
                    977:                if (a == NULL)
                    978:                        return (NULL);
                    979:        } else
                    980:                anchor_free = a->next;
                    981:
                    982:        if (anchor_root == NULL)
                    983:                anchor_end = a;
                    984:
                    985:        a->next = anchor_root;
                    986:        anchor_root = a;
                    987:
                    988:        a->ref = 0;
                    989:        strlcpy(a->name, path, sizeof(a->name));
                    990:        return (a);
                    991: }
                    992:
                    993: void
                    994: reset_anchor_names(void)
                    995: {
                    996:        if (anchor_end == NULL)
                    997:                return;
                    998:
                    999:        anchor_end->next = anchor_free;
                   1000:        anchor_free = anchor_root;
                   1001:        anchor_root = anchor_end = NULL;
                   1002: }
                   1003:
                   1004: struct pfioc_ruleset ruleset;
                   1005: char *rs_end = NULL;
                   1006:
                   1007: int
                   1008: read_rulesets(const char *path)
                   1009: {
                   1010:        char *pre;
                   1011:        struct anchor_name *a;
                   1012:        u_int32_t nr, ns;
                   1013:        int len;
                   1014:
                   1015:        if (path == NULL)
                   1016:                ruleset.path[0] = '\0';
                   1017:        else if (strlcpy(ruleset.path, path, sizeof(ruleset.path)) >=
                   1018:            sizeof(ruleset.path))
                   1019:                 return (-1);
                   1020:
                   1021:        /* a persistent storage for anchor names */
                   1022:        a = alloc_anchor_name(ruleset.path);
                   1023:        if (a == NULL)
                   1024:                return (-1);
                   1025:
                   1026:        len = read_anchor_rules(a->name);
                   1027:        if (len < 0)
                   1028:                return (-1);
                   1029:
                   1030:        a->ref += len;
                   1031:
                   1032:        if (ioctl(pf_dev, DIOCGETRULESETS, &ruleset)) {
                   1033:                error("DIOCGETRULESETS: %s", strerror(errno));
                   1034:                return (-1);
                   1035:        }
                   1036:
                   1037:        ns = ruleset.nr;
                   1038:
                   1039:        if (rs_end == NULL)
                   1040:                rs_end = ruleset.path + sizeof(ruleset.path);
                   1041:
                   1042:        /* 'pre' tracks the previous level on the anchor */
                   1043:        pre = strchr(ruleset.path, 0);
                   1044:        len = rs_end - pre;
                   1045:        if (len < 1)
                   1046:                return (-1);
                   1047:        --len;
                   1048:
                   1049:        for (nr = 0; nr < ns; ++nr) {
                   1050:                ruleset.nr = nr;
                   1051:                if (ioctl(pf_dev, DIOCGETRULESET, &ruleset)) {
                   1052:                        error("DIOCGETRULESET: %s", strerror(errno));
                   1053:                        return (-1);
                   1054:                }
                   1055:                *pre = '/';
                   1056:                if (strlcpy(pre + 1, ruleset.name, len) < len)
                   1057:                        read_rulesets(ruleset.path);
                   1058:                *pre = '\0';
                   1059:        }
                   1060:
                   1061:        return (0);
                   1062: }
                   1063:
                   1064: void
                   1065: compute_anchor_field(void)
                   1066: {
                   1067:        struct anchor_name *a;
                   1068:        int sum, cnt, mx, nx;
                   1069:        sum = cnt = mx = 0;
                   1070:
                   1071:        for (a = anchor_root; a != NULL; a = a->next, cnt++) {
                   1072:                int len;
                   1073:                if (a->ref == 0)
                   1074:                        continue;
                   1075:                len = strlen(a->name);
                   1076:                sum += len;
                   1077:                if (len > mx)
                   1078:                        mx = len;
                   1079:        }
                   1080:
                   1081:        nx = sum/cnt;
                   1082:        if (nx < ANCHOR_FLD_SIZE)
                   1083:                nx = (mx < ANCHOR_FLD_SIZE) ? mx : ANCHOR_FLD_SIZE;
                   1084:
                   1085:        if (FLD_ANCHOR->max_width != mx ||
                   1086:            FLD_ANCHOR->norm_width != nx) {
                   1087:                FLD_ANCHOR->max_width = mx;
                   1088:                FLD_ANCHOR->norm_width = nx;
                   1089:                field_setup();
                   1090:                need_update = 1;
                   1091:        }
                   1092: }
                   1093:
                   1094: int
                   1095: read_rules(void)
                   1096: {
1.4     ! canacar  1097:        int ret, nw, mw;
1.1       canacar  1098:        num_rules = 0;
                   1099:
                   1100:        if (pf_dev == -1)
                   1101:                return (-1);
                   1102:
                   1103:        label_length = MIN_LABEL_SIZE;
                   1104:
                   1105:        reset_anchor_names();
                   1106:        ret = read_rulesets(NULL);
                   1107:        compute_anchor_field();
                   1108:
1.4     ! canacar  1109:        nw = mw = label_length;
        !          1110:        if (nw > 16)
        !          1111:                nw = 16;
        !          1112:
        !          1113:        if (FLD_LABEL->norm_width != nw ||
        !          1114:            FLD_LABEL->max_width != mw) {
        !          1115:                FLD_LABEL->norm_width = nw;
        !          1116:                FLD_LABEL->max_width = mw;
        !          1117:                field_setup();
        !          1118:                need_update = 1;
1.1       canacar  1119:        }
                   1120:
                   1121:        num_disp = num_rules;
                   1122:        return (ret);
                   1123: }
                   1124:
                   1125: void
                   1126: tb_print_addrw(struct pf_addr_wrap *addr, struct pf_addr *mask, u_int8_t af)
                   1127: {
                   1128:        switch (addr->type) {
                   1129:        case PF_ADDR_ADDRMASK:
                   1130:                tb_print_addr(&addr->v.a.addr, mask, af);
                   1131:                break;
                   1132:        case  PF_ADDR_NOROUTE:
                   1133:                tbprintf("noroute");
                   1134:                break;
                   1135:        case PF_ADDR_DYNIFTL:
                   1136:                tbprintf("(%s)", addr->v.ifname);
                   1137:                break;
                   1138:        case PF_ADDR_TABLE:
                   1139:                tbprintf("<%s>", addr->v.tblname);
                   1140:                break;
                   1141:        default:
                   1142:                tbprintf("UNKNOWN");
                   1143:                break;
                   1144:        }
                   1145: }
                   1146:
                   1147: void
                   1148: tb_print_op(u_int8_t op, const char *a1, const char *a2)
                   1149: {
                   1150:        if (op == PF_OP_IRG)
                   1151:                tbprintf("%s >< %s ", a1, a2);
                   1152:        else if (op == PF_OP_XRG)
                   1153:                tbprintf("%s <> %s ", a1, a2);
                   1154:        else if (op == PF_OP_RRG)
                   1155:                tbprintf("%s:%s ", a1, a2);
                   1156:        else if (op == PF_OP_EQ)
                   1157:                tbprintf("= %s ", a1);
                   1158:        else if (op == PF_OP_NE)
                   1159:                tbprintf("!= %s ", a1);
                   1160:        else if (op == PF_OP_LT)
                   1161:                tbprintf("< %s ", a1);
                   1162:        else if (op == PF_OP_LE)
                   1163:                tbprintf("<= %s ", a1);
                   1164:        else if (op == PF_OP_GT)
                   1165:                tbprintf("> %s ", a1);
                   1166:        else if (op == PF_OP_GE)
                   1167:                tbprintf(">= %s ", a1);
                   1168: }
                   1169:
                   1170: void
                   1171: tb_print_port(u_int8_t op, u_int16_t p1, u_int16_t p2, char *proto)
                   1172: {
                   1173:        char a1[6], a2[6];
                   1174:        struct servent *s = getservbyport(p1, proto);
                   1175:
                   1176:        p1 = ntohs(p1);
                   1177:        p2 = ntohs(p2);
                   1178:        snprintf(a1, sizeof(a1), "%u", p1);
                   1179:        snprintf(a2, sizeof(a2), "%u", p2);
                   1180:        tbprintf("port ");
                   1181:        if (s != NULL && (op == PF_OP_EQ || op == PF_OP_NE))
                   1182:                tb_print_op(op, s->s_name, a2);
                   1183:        else
                   1184:                tb_print_op(op, a1, a2);
                   1185: }
                   1186:
                   1187: void
                   1188: tb_print_fromto(struct pf_rule_addr *src, struct pf_rule_addr *dst,
                   1189:                u_int8_t af, u_int8_t proto)
                   1190: {
                   1191:        if (
                   1192:            PF_AZERO(PT_ADDR(src), AF_INET6) &&
                   1193:            PF_AZERO(PT_ADDR(dst), AF_INET6) &&
                   1194:            ! PT_NOROUTE(src) && ! PT_NOROUTE(dst) &&
                   1195:            PF_AZERO(PT_MASK(src), AF_INET6) &&
                   1196:            PF_AZERO(PT_MASK(dst), AF_INET6) &&
                   1197:            !src->port_op && !dst->port_op)
                   1198:                tbprintf("all ");
                   1199:        else {
                   1200:                tbprintf("from ");
                   1201:                if (PT_NOROUTE(src))
                   1202:                        tbprintf("no-route ");
                   1203:                else if (PF_AZERO(PT_ADDR(src), AF_INET6) &&
                   1204:                         PF_AZERO(PT_MASK(src), AF_INET6))
                   1205:                        tbprintf("any ");
                   1206:                else {
                   1207:                        if (src->neg)
                   1208:                                tbprintf("! ");
                   1209:                        tb_print_addrw(&src->addr, PT_MASK(src), af);
                   1210:                        tbprintf(" ");
                   1211:                }
                   1212:                if (src->port_op)
                   1213:                        tb_print_port(src->port_op, src->port[0],
                   1214:                                      src->port[1],
                   1215:                                      proto == IPPROTO_TCP ? "tcp" : "udp");
                   1216:
                   1217:                tbprintf("to ");
                   1218:                if (PT_NOROUTE(dst))
                   1219:                        tbprintf("no-route ");
                   1220:                else if (PF_AZERO(PT_ADDR(dst), AF_INET6) &&
                   1221:                         PF_AZERO(PT_MASK(dst), AF_INET6))
                   1222:                        tbprintf("any ");
                   1223:                else {
                   1224:                        if (dst->neg)
                   1225:                                tbprintf("! ");
                   1226:                        tb_print_addrw(&dst->addr, PT_MASK(dst), af);
                   1227:                        tbprintf(" ");
                   1228:                }
                   1229:                if (dst->port_op)
                   1230:                        tb_print_port(dst->port_op, dst->port[0],
                   1231:                                      dst->port[1],
                   1232:                                      proto == IPPROTO_TCP ? "tcp" : "udp");
                   1233:        }
                   1234: }
                   1235:
                   1236: void
                   1237: tb_print_ugid(u_int8_t op, unsigned u1, unsigned u2,
                   1238:              const char *t, unsigned umax)
                   1239: {
                   1240:        char    a1[11], a2[11];
                   1241:
                   1242:        snprintf(a1, sizeof(a1), "%u", u1);
                   1243:        snprintf(a2, sizeof(a2), "%u", u2);
                   1244:
                   1245:        tbprintf("%s ", t);
                   1246:        if (u1 == umax && (op == PF_OP_EQ || op == PF_OP_NE))
                   1247:                tb_print_op(op, "unknown", a2);
                   1248:        else
                   1249:                tb_print_op(op, a1, a2);
                   1250: }
                   1251:
                   1252: void
                   1253: tb_print_flags(u_int8_t f)
                   1254: {
                   1255:        const char *tcpflags = "FSRPAUEW";
                   1256:        int i;
                   1257:
                   1258:        for (i = 0; tcpflags[i]; ++i)
                   1259:                if (f & (1 << i))
                   1260:                        tbprintf("%c", tcpflags[i]);
                   1261: }
                   1262:
                   1263: void
                   1264: print_rule(struct pf_rule *pr)
                   1265: {
                   1266:        static const char *actiontypes[] = { "Pass", "Block", "Scrub", "Nat",
                   1267:            "no Nat", "Binat", "no Binat", "Rdr", "no Rdr" };
                   1268:        int numact = sizeof(actiontypes) / sizeof(char *);
                   1269:
                   1270:        static const char *routetypes[] = { "", "fastroute", "route-to",
                   1271:            "dup-to", "reply-to" };
                   1272:
                   1273:        int numroute = sizeof(routetypes) / sizeof(char *);
                   1274:
                   1275:        if (pr == NULL) return;
                   1276:
                   1277:        print_fld_str(FLD_LABEL, pr->label);
                   1278:        print_fld_size(FLD_STATS, pr->states_tot);
                   1279:
                   1280:        print_fld_size(FLD_PKTS, pr->packets[0] + pr->packets[1]);
                   1281:        print_fld_size(FLD_BYTES, pr->bytes[0] + pr->bytes[1]);
1.4     ! canacar  1282:
1.1       canacar  1283:        print_fld_uint(FLD_RULE, pr->nr);
                   1284:        print_fld_str(FLD_DIR, pr->direction == PF_OUT ? "Out" : "In");
                   1285:        if (pr->quick)
                   1286:                print_fld_str(FLD_QUICK, "Quick");
                   1287:
                   1288:        if (pr->keep_state == PF_STATE_NORMAL)
                   1289:                print_fld_str(FLD_KST, "Keep");
                   1290:        else if (pr->keep_state == PF_STATE_MODULATE)
                   1291:                print_fld_str(FLD_KST, "Mod");
                   1292: #ifdef PF_STATE_SYNPROXY
                   1293:        else if (pr->keep_state == PF_STATE_MODULATE)
                   1294:                print_fld_str(FLD_KST, "Syn");
                   1295: #endif
                   1296:        if (pr->log == 1)
                   1297:                print_fld_str(FLD_LOG, "Log");
                   1298:        else if (pr->log == 2)
                   1299:                print_fld_str(FLD_LOG, "All");
                   1300:
                   1301:        if (pr->action >= numact)
                   1302:                print_fld_uint(FLD_ACTION, pr->action);
                   1303:        else print_fld_str(FLD_ACTION, actiontypes[pr->action]);
                   1304:
                   1305:        if (pr->proto) {
                   1306:                struct protoent *p = getprotobynumber(pr->proto);
                   1307:
                   1308:                if (p != NULL)
                   1309:                        print_fld_str(FLD_PROTO, p->p_name);
                   1310:                else
                   1311:                        print_fld_uint(FLD_PROTO, pr->proto);
                   1312:        }
                   1313:
                   1314:        if (pr->ifname[0]) {
                   1315:                tb_start();
                   1316:                if (pr->ifnot)
                   1317:                        tbprintf("!");
                   1318:                tbprintf("%s", pr->ifname);
                   1319:                print_fld_tb(FLD_IF);
                   1320:        }
                   1321:        if (pr->max_states)
                   1322:                print_fld_uint(FLD_STMAX, pr->max_states);
1.4     ! canacar  1323:
1.1       canacar  1324:        /* print info field */
                   1325:
                   1326:        tb_start();
                   1327:
                   1328:        if (pr->natpass)
                   1329:                tbprintf("pass ");
1.4     ! canacar  1330:
1.1       canacar  1331:        if (pr->action == PF_DROP) {
                   1332:                if (pr->rule_flag & PFRULE_RETURNRST)
                   1333:                        tbprintf("return-rst ");
                   1334: #ifdef PFRULE_RETURN
                   1335:                else if (pr->rule_flag & PFRULE_RETURN)
                   1336:                        tbprintf("return ");
                   1337: #endif
                   1338: #ifdef PFRULE_RETURNICMP
                   1339:                else if (pr->rule_flag & PFRULE_RETURNICMP)
                   1340:                        tbprintf("return-icmp ");
                   1341: #endif
                   1342:                else
                   1343:                        tbprintf("drop ");
                   1344:        }
                   1345:
                   1346:        if (pr->rt > 0 && pr->rt < numroute) {
                   1347:                tbprintf("%s ", routetypes[pr->rt]);
                   1348:                if (pr->rt != PF_FASTROUTE)
                   1349:                        tbprintf("... ");
                   1350:        }
1.4     ! canacar  1351:
1.1       canacar  1352:        if (pr->af) {
                   1353:                if (pr->af == AF_INET)
                   1354:                        tbprintf("inet ");
                   1355:                else
                   1356:                        tbprintf("inet6 ");
                   1357:        }
                   1358:
                   1359:        tb_print_fromto(&pr->src, &pr->dst, pr->af, pr->proto);
1.4     ! canacar  1360:
1.1       canacar  1361:        if (pr->uid.op)
                   1362:                tb_print_ugid(pr->uid.op, pr->uid.uid[0], pr->uid.uid[1],
                   1363:                        "user", UID_MAX);
                   1364:        if (pr->gid.op)
                   1365:                tb_print_ugid(pr->gid.op, pr->gid.gid[0], pr->gid.gid[1],
                   1366:                        "group", GID_MAX);
                   1367:
                   1368:        if (pr->flags || pr->flagset) {
                   1369:                tbprintf(" flags ");
                   1370:                tb_print_flags(pr->flags);
                   1371:                tbprintf("/");
                   1372:                tb_print_flags(pr->flagset);
                   1373:        }
                   1374:
                   1375:        tbprintf(" ");
                   1376:
                   1377:        if (pr->tos)
                   1378:                tbprintf("tos 0x%2.2x ", pr->tos);
                   1379: #ifdef PFRULE_FRAGMENT
                   1380:        if (pr->rule_flag & PFRULE_FRAGMENT)
                   1381:                tbprintf("fragment ");
                   1382: #endif
                   1383: #ifdef PFRULE_NODF
                   1384:        if (pr->rule_flag & PFRULE_NODF)
                   1385:                tbprintf("no-df ");
                   1386: #endif
                   1387: #ifdef PFRULE_RANDOMID
                   1388:        if (pr->rule_flag & PFRULE_RANDOMID)
                   1389:                tbprintf("random-id ");
                   1390: #endif
                   1391:        if (pr->min_ttl)
                   1392:                tbprintf("min-ttl %d ", pr->min_ttl);
                   1393:        if (pr->max_mss)
                   1394:                tbprintf("max-mss %d ", pr->max_mss);
                   1395:        if (pr->allow_opts)
                   1396:                tbprintf("allow-opts ");
                   1397:
                   1398:        if (pr->action == PF_SCRUB) {
                   1399: #ifdef PFRULE_REASSEMBLE_TCP
                   1400:                if (pr->rule_flag & PFRULE_REASSEMBLE_TCP)
                   1401:                        tbprintf("reassemble tcp ");
                   1402: #endif
                   1403: #ifdef PFRULE_FRAGDROP
                   1404:                if (pr->rule_flag & PFRULE_FRAGDROP)
                   1405:                        tbprintf("fragment drop-ovl ");
                   1406:                else
                   1407: #endif
                   1408: #ifdef PFRULE_FRAGCROP
                   1409:                if (pr->rule_flag & PFRULE_FRAGCROP)
                   1410:                        tbprintf("fragment crop ");
                   1411:                else
                   1412: #endif
                   1413:                        tbprintf("fragment reassemble ");
                   1414:        }
                   1415:
                   1416:        if (pr->qname[0] && pr->pqname[0])
                   1417:                tbprintf("queue(%s, %s) ", pr->qname, pr->pqname);
                   1418:        else if (pr->qname[0])
                   1419:                tbprintf("queue %s ", pr->qname);
1.4     ! canacar  1420:
1.1       canacar  1421:        if (pr->tagname[0])
                   1422:                tbprintf("tag %s ", pr->tagname);
                   1423:        if (pr->match_tagname[0]) {
                   1424:                if (pr->match_tag_not)
                   1425:                        tbprintf("! ");
                   1426:                tbprintf("tagged %s ", pr->match_tagname);
                   1427:        }
1.4     ! canacar  1428:
1.1       canacar  1429:        print_fld_tb(FLD_RINFO);
                   1430:
                   1431:        /* XXX anchor field overloaded with anchor name */
                   1432:        print_fld_str(FLD_ANCHOR, (char *)pr->anchor);
                   1433:        tb_end();
                   1434:
                   1435:        end_line();
                   1436: }
                   1437:
                   1438: void
                   1439: print_rules(void)
                   1440: {
                   1441:        u_int32_t n, count = 0;
                   1442:
                   1443:        for (n = dispstart; n < num_rules; n++) {
                   1444:                print_rule(rules + n);
                   1445:                count ++;
                   1446:                if (maxprint > 0 && count >= maxprint)
                   1447:                        break;
                   1448:        }
                   1449: }
                   1450:
                   1451: /* queue display */
                   1452:
                   1453: struct pf_altq_node *
                   1454: pfctl_find_altq_node(struct pf_altq_node *root, const char *qname,
                   1455:     const char *ifname)
                   1456: {
                   1457:        struct pf_altq_node     *node, *child;
                   1458:
                   1459:        for (node = root; node != NULL; node = node->next) {
                   1460:                if (!strcmp(node->altq.qname, qname)
                   1461:                    && !(strcmp(node->altq.ifname, ifname)))
                   1462:                        return (node);
                   1463:                if (node->children != NULL) {
                   1464:                        child = pfctl_find_altq_node(node->children, qname,
                   1465:                            ifname);
                   1466:                        if (child != NULL)
                   1467:                                return (child);
                   1468:                }
                   1469:        }
                   1470:        return (NULL);
                   1471: }
                   1472:
                   1473: void
                   1474: pfctl_insert_altq_node(struct pf_altq_node **root,
                   1475:     const struct pf_altq altq, const struct queue_stats qstats)
                   1476: {
                   1477:        struct pf_altq_node     *node;
                   1478:
                   1479:        node = calloc(1, sizeof(struct pf_altq_node));
                   1480:        if (node == NULL)
                   1481:                err(1, "pfctl_insert_altq_node: calloc");
                   1482:        memcpy(&node->altq, &altq, sizeof(struct pf_altq));
                   1483:        memcpy(&node->qstats, &qstats, sizeof(qstats));
                   1484:        node->next = node->children = node->next_flat = NULL;
                   1485:        node->depth = 0;
                   1486:        node->visited = 1;
                   1487:
                   1488:        if (*root == NULL)
                   1489:                *root = node;
                   1490:        else if (!altq.parent[0]) {
                   1491:                struct pf_altq_node     *prev = *root;
                   1492:
                   1493:                while (prev->next != NULL)
                   1494:                        prev = prev->next;
                   1495:                prev->next = node;
                   1496:        } else {
                   1497:                struct pf_altq_node     *parent;
                   1498:
                   1499:                parent = pfctl_find_altq_node(*root, altq.parent, altq.ifname);
                   1500:                if (parent == NULL)
                   1501:                        errx(1, "parent %s not found", altq.parent);
                   1502:                node->depth = parent->depth+1;
                   1503:                if (parent->children == NULL)
                   1504:                        parent->children = node;
                   1505:                else {
                   1506:                        struct pf_altq_node *prev = parent->children;
                   1507:
                   1508:                        while (prev->next != NULL)
                   1509:                                prev = prev->next;
                   1510:                        prev->next = node;
                   1511:                }
                   1512:        }
                   1513:        if (*root != node) {
                   1514:                struct pf_altq_node     *prev_flat = *root;
                   1515:                while (prev_flat->next_flat != NULL) {
                   1516:                        prev_flat = prev_flat->next_flat;
                   1517:                }
                   1518:                prev_flat->next_flat = node;
                   1519:        }
                   1520: }
                   1521:
                   1522: int
                   1523: pfctl_update_qstats(struct pf_altq_node **root, int *inserts)
                   1524: {
                   1525:        struct pf_altq_node     *node;
                   1526:        struct pfioc_altq        pa;
                   1527:        struct pfioc_qstats      pq;
                   1528:        u_int32_t                nr;
                   1529:        struct queue_stats       qstats;
                   1530:        u_int32_t                nr_queues;
                   1531:
                   1532:        *inserts = 0;
                   1533:        memset(&pa, 0, sizeof(pa));
                   1534:        memset(&pq, 0, sizeof(pq));
                   1535:        memset(&qstats, 0, sizeof(qstats));
                   1536:
                   1537:        if (pf_dev < 0)
                   1538:                return (-1);
                   1539:
                   1540:        if (ioctl(pf_dev, DIOCGETALTQS, &pa)) {
                   1541:                error("DIOCGETALTQS: %s", strerror(errno));
                   1542:                return (-1);
                   1543:        }
                   1544:        num_queues = nr_queues = pa.nr;
                   1545:        for (nr = 0; nr < nr_queues; ++nr) {
                   1546:                pa.nr = nr;
                   1547:                if (ioctl(pf_dev, DIOCGETALTQ, &pa)) {
                   1548:                        error("DIOCGETALTQ: %s", strerror(errno));
                   1549:                        return (-1);
                   1550:                }
                   1551:                if (pa.altq.qid > 0) {
                   1552:                        pq.nr = nr;
                   1553:                        pq.ticket = pa.ticket;
                   1554:                        pq.buf = &qstats;
                   1555:                        pq.nbytes = sizeof(qstats);
                   1556:                        if (ioctl(pf_dev, DIOCGETQSTATS, &pq)) {
                   1557:                                error("DIOCGETQSTATS: %s", strerror(errno));
                   1558:                                return (-1);
                   1559:                        }
                   1560:                        qstats.valid = 1;
                   1561:                        gettimeofday(&qstats.timestamp, NULL);
                   1562:                        if ((node = pfctl_find_altq_node(*root, pa.altq.qname,
                   1563:                            pa.altq.ifname)) != NULL) {
                   1564:                                // update altq data too as bandwidth may have changed
                   1565:                                memcpy(&node->altq, &pa.altq, sizeof(struct pf_altq));
                   1566:                                memcpy(&node->qstats_last, &node->qstats,
                   1567:                                    sizeof(struct queue_stats));
                   1568:                                memcpy(&node->qstats, &qstats,
                   1569:                                    sizeof(qstats));
                   1570:                                node->visited = 1;
                   1571:                        } else {
                   1572:                                pfctl_insert_altq_node(root, pa.altq, qstats);
                   1573:                                *inserts = 1;
                   1574:                        }
                   1575:                }
                   1576:                else
                   1577:                        --num_queues;
                   1578:        }
                   1579:        return (0);
                   1580: }
                   1581:
                   1582: void
                   1583: pfctl_free_altq_node(struct pf_altq_node *node)
                   1584: {
                   1585:        while (node != NULL) {
                   1586:                struct pf_altq_node     *prev;
                   1587:
                   1588:                if (node->children != NULL)
                   1589:                        pfctl_free_altq_node(node->children);
                   1590:                prev = node;
                   1591:                node = node->next;
                   1592:                free(prev);
                   1593:        }
                   1594: }
                   1595:
                   1596: void
                   1597: pfctl_mark_all_unvisited(struct pf_altq_node *root)
                   1598: {
                   1599:        if (root != NULL) {
                   1600:                struct pf_altq_node     *node = root;
                   1601:                while (node != NULL) {
                   1602:                        node->visited = 0;
                   1603:                        node = node->next_flat;
                   1604:                }
                   1605:        }
                   1606: }
                   1607:
                   1608: int
                   1609: pfctl_have_unvisited(struct pf_altq_node *root)
                   1610: {
                   1611:        if (root == NULL)
                   1612:                return(0);
                   1613:        else {
                   1614:                struct pf_altq_node     *node = root;
                   1615:                while (node != NULL) {
                   1616:                        if (node->visited == 0)
                   1617:                                return(1);
                   1618:                        node = node->next_flat;
                   1619:                }
                   1620:                return(0);
                   1621:        }
                   1622: }
                   1623:
                   1624: struct pf_altq_node    *altq_root = NULL;
                   1625:
                   1626: int
                   1627: select_queues(void)
                   1628: {
                   1629:        num_disp = num_queues;
                   1630:        return (0);
                   1631: }
                   1632:
                   1633: int
                   1634: read_queues(void)
                   1635: {
                   1636:        static int first_read = 1;
                   1637:        int inserts;
                   1638:        num_disp = num_queues = 0;
                   1639:
                   1640:        pfctl_mark_all_unvisited(altq_root);
                   1641:        if (pfctl_update_qstats(&altq_root, &inserts))
                   1642:                return (-1);
                   1643:
                   1644:        // Allow inserts only on first read;
                   1645:        // on subsequent reads clear and reload
                   1646:        if (first_read == 0 &&
                   1647:            (inserts != 0 || pfctl_have_unvisited(altq_root) != 0)) {
                   1648:                pfctl_free_altq_node(altq_root);
                   1649:                altq_root = NULL;
                   1650:                first_read = 1;
                   1651:                if (pfctl_update_qstats(&altq_root, &inserts))
                   1652:                        return (-1);
                   1653:        }
                   1654:
                   1655:        first_read = 0;
                   1656:        num_disp = num_queues;
                   1657:
                   1658:        return(0);
                   1659: }
                   1660:
                   1661: double
                   1662: calc_interval(struct timeval *cur_time, struct timeval *last_time)
                   1663: {
                   1664:        double  sec;
                   1665:
                   1666:        sec = (double)(cur_time->tv_sec - last_time->tv_sec) +
                   1667:            (double)(cur_time->tv_usec - last_time->tv_usec) / 1000000;
                   1668:
                   1669:        return (sec);
                   1670: }
                   1671:
                   1672: double
                   1673: calc_rate(u_int64_t new_bytes, u_int64_t last_bytes, double interval)
                   1674: {
                   1675:        double  rate;
                   1676:
                   1677:        rate = (double)(new_bytes - last_bytes) / interval;
                   1678:        return (rate);
                   1679: }
                   1680:
                   1681: double
                   1682: calc_pps(u_int64_t new_pkts, u_int64_t last_pkts, double interval)
                   1683: {
                   1684:        double  pps;
                   1685:
                   1686:        pps = (double)(new_pkts - last_pkts) / interval;
                   1687:        return (pps);
                   1688: }
                   1689:
                   1690: #define DEFAULT_PRIORITY       1
                   1691:
                   1692: void
                   1693: print_queue(struct pf_altq_node *node)
                   1694: {
                   1695:        u_int8_t d;
                   1696:        double  interval, pps, bps;
                   1697:        pps = bps = 0;
                   1698:
                   1699:        tb_start();
                   1700:        for (d = 0; d < node->depth; d++)
                   1701:                tbprintf(" ");
                   1702:        tbprintf(node->altq.qname);
                   1703:        print_fld_tb(FLD_QUEUE);
                   1704:
                   1705:        if (node->altq.scheduler == ALTQT_CBQ ||
                   1706:            node->altq.scheduler == ALTQT_HFSC
                   1707:                )
                   1708:                print_fld_bw(FLD_BANDW, (double)node->altq.bandwidth);
                   1709:
                   1710:        if (node->altq.priority != DEFAULT_PRIORITY)
                   1711:                print_fld_uint(FLD_PRIO,
                   1712:                               node->altq.priority);
                   1713:
                   1714:        if (node->qstats.valid && node->qstats_last.valid)
                   1715:                interval = calc_interval(&node->qstats.timestamp,
                   1716:                                         &node->qstats_last.timestamp);
                   1717:        else
                   1718:                interval = 0;
                   1719:
                   1720:        switch (node->altq.scheduler) {
                   1721:        case ALTQT_CBQ:
                   1722:                print_fld_str(FLD_SCHED, "cbq");
                   1723:                print_fld_size(FLD_PKTS,
                   1724:                               node->qstats.data.cbq_stats.xmit_cnt.packets);
                   1725:                print_fld_size(FLD_BYTES,
                   1726:                               node->qstats.data.cbq_stats.xmit_cnt.bytes);
                   1727:                print_fld_size(FLD_DROPP,
                   1728:                               node->qstats.data.cbq_stats.drop_cnt.packets);
                   1729:                print_fld_size(FLD_DROPB,
                   1730:                               node->qstats.data.cbq_stats.drop_cnt.bytes);
                   1731:                print_fld_size(FLD_QLEN, node->qstats.data.cbq_stats.qcnt);
                   1732:                print_fld_size(FLD_BORR, node->qstats.data.cbq_stats.borrows);
                   1733:                print_fld_size(FLD_SUSP, node->qstats.data.cbq_stats.delays);
                   1734:                if (interval > 0) {
                   1735:                        pps = calc_pps(node->qstats.data.cbq_stats.xmit_cnt.packets,
                   1736:                                       node->qstats_last.data.cbq_stats.xmit_cnt.packets, interval);
                   1737:                        bps = calc_rate(node->qstats.data.cbq_stats.xmit_cnt.bytes,
                   1738:                                        node->qstats_last.data.cbq_stats.xmit_cnt.bytes, interval);
                   1739:                }
                   1740:                break;
                   1741:        case ALTQT_PRIQ:
                   1742:                print_fld_str(FLD_SCHED, "priq");
                   1743:                print_fld_size(FLD_PKTS,
                   1744:                               node->qstats.data.priq_stats.xmitcnt.packets);
                   1745:                print_fld_size(FLD_BYTES,
                   1746:                               node->qstats.data.priq_stats.xmitcnt.bytes);
                   1747:                print_fld_size(FLD_DROPP,
                   1748:                               node->qstats.data.priq_stats.dropcnt.packets);
                   1749:                print_fld_size(FLD_DROPB,
                   1750:                               node->qstats.data.priq_stats.dropcnt.bytes);
                   1751:                print_fld_size(FLD_QLEN, node->qstats.data.priq_stats.qlength);
                   1752:                if (interval > 0) {
                   1753:                        pps = calc_pps(node->qstats.data.priq_stats.xmitcnt.packets,
                   1754:                                       node->qstats_last.data.priq_stats.xmitcnt.packets, interval);
                   1755:                        bps = calc_rate(node->qstats.data.priq_stats.xmitcnt.bytes,
                   1756:                                        node->qstats_last.data.priq_stats.xmitcnt.bytes, interval);
                   1757:                }
                   1758:                break;
                   1759:        case ALTQT_HFSC:
                   1760:                print_fld_str(FLD_SCHED, "hfsc");
                   1761:                print_fld_size(FLD_PKTS,
                   1762:                                node->qstats.data.hfsc_stats.xmit_cnt.packets);
                   1763:                print_fld_size(FLD_BYTES,
                   1764:                                node->qstats.data.hfsc_stats.xmit_cnt.bytes);
                   1765:                print_fld_size(FLD_DROPP,
                   1766:                                node->qstats.data.hfsc_stats.drop_cnt.packets);
                   1767:                print_fld_size(FLD_DROPB,
                   1768:                                node->qstats.data.hfsc_stats.drop_cnt.bytes);
                   1769:                print_fld_size(FLD_QLEN, node->qstats.data.hfsc_stats.qlength);
                   1770:                if (interval > 0) {
                   1771:                        pps = calc_pps(node->qstats.data.hfsc_stats.xmit_cnt.packets,
                   1772:                                        node->qstats_last.data.hfsc_stats.xmit_cnt.packets, interval);
                   1773:                        bps = calc_rate(node->qstats.data.hfsc_stats.xmit_cnt.bytes,
                   1774:                                        node->qstats_last.data.hfsc_stats.xmit_cnt.bytes, interval);
                   1775:                }
                   1776:                break;
                   1777:        }
                   1778:
                   1779:        /* if (node->altq.scheduler != ALTQT_HFSC && interval > 0) { */
                   1780:        if (node->altq.scheduler && interval > 0) {
                   1781:                tb_start();
                   1782:                if (pps > 0 && pps < 1)
                   1783:                        tbprintf("%-3.1lf", pps);
                   1784:                else
                   1785:                        tbprintf("%u", (unsigned int) pps);
                   1786:
                   1787:                print_fld_tb(FLD_PKTSPS);
                   1788:                print_fld_bw(FLD_BYTESPS, bps);
                   1789:        }
                   1790: }
                   1791:
                   1792: void
                   1793: print_queues(void)
                   1794: {
                   1795:        u_int32_t n, count = 0;
                   1796:        struct pf_altq_node *node = altq_root;
                   1797:
                   1798:        for (n = 0; n < dispstart; n++)
                   1799:                node = node->next_flat;
                   1800:
                   1801:        for (; n < num_disp; n++) {
                   1802:                print_queue(node);
                   1803:                node = node->next_flat;
                   1804:                end_line();
                   1805:                count ++;
                   1806:                if (maxprint > 0 && count >= maxprint)
                   1807:                        break;
                   1808:        }
                   1809: }
                   1810:
                   1811: /* main program functions */
                   1812:
                   1813: void
                   1814: update_cache()
                   1815: {
                   1816:        static int pstate = -1;
                   1817:        if (pstate == cachestates)
                   1818:                return;
                   1819:
                   1820:        pstate = cachestates;
                   1821:        if (cachestates) {
                   1822:                show_field(FLD_SI);
                   1823:                show_field(FLD_SP);
                   1824:                gotsig_alarm = 1;
                   1825:        } else {
                   1826:                hide_field(FLD_SI);
                   1827:                hide_field(FLD_SP);
                   1828:                need_update = 1;
                   1829:        }
                   1830:        field_setup();
                   1831: }
                   1832:
                   1833: void
                   1834: initpftop(void)
                   1835: {
                   1836:        struct pf_status status;
                   1837:        field_view *v;
                   1838:        int cachesize = DEFAULT_CACHE_SIZE;
                   1839:
                   1840:        v = views;
                   1841:        while(v->name != NULL)
                   1842:                add_view(v++);
                   1843:
                   1844:        pf_dev = open("/dev/pf", O_RDONLY);
                   1845:        if (pf_dev == -1) {
                   1846:                alloc_buf(0);
                   1847:        } else if (ioctl(pf_dev, DIOCGETSTATUS, &status)) {
                   1848:                warn("DIOCGETSTATUS");
                   1849:                alloc_buf(0);
                   1850:        } else
                   1851:                alloc_buf(status.states);
                   1852:
                   1853:        /* initialize cache with given size */
                   1854:        if (cache_init(cachesize))
                   1855:                warnx("Failed to initialize cache.");
                   1856:        else if (interactive && cachesize > 0)
                   1857:                cachestates = 1;
                   1858:
                   1859:        update_cache();
                   1860:
                   1861:        show_field(FLD_STMAX);
                   1862:        show_field(FLD_ANCHOR);
                   1863: }