[BACK]Return to pftop.c CVS log [TXT][DIR] Up to [local] / src / usr.bin / systat

Annotation of src/usr.bin/systat/pftop.c, Revision 1.7

1.7     ! canacar     1: /* $Id: pftop.c,v 1.6 2008/10/08 15:11:13 canacar Exp $         */
1.1       canacar     2: /*
                      3:  * Copyright (c) 2001, 2007 Can Erkin Acar
                      4:  * Copyright (c) 2001 Daniel Hartmeier
                      5:  * All rights reserved.
                      6:  *
                      7:  * Redistribution and use in source and binary forms, with or without
                      8:  * modification, are permitted provided that the following conditions
                      9:  * are met:
                     10:  *
                     11:  *    - Redistributions of source code must retain the above copyright
                     12:  *      notice, this list of conditions and the following disclaimer.
                     13:  *    - Redistributions in binary form must reproduce the above
                     14:  *      copyright notice, this list of conditions and the following
                     15:  *      disclaimer in the documentation and/or other materials provided
                     16:  *      with the distribution.
                     17:  *
                     18:  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
                     19:  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
                     20:  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
                     21:  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
                     22:  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
                     23:  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
                     24:  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
                     25:  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
                     26:  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
                     27:  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
                     28:  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
                     29:  * POSSIBILITY OF SUCH DAMAGE.
                     30:  *
                     31:  */
                     32:
                     33: #include <sys/types.h>
                     34: #include <sys/ioctl.h>
                     35: #include <sys/socket.h>
                     36:
                     37: #include <net/if.h>
                     38: #include <netinet/in.h>
                     39: #include <netinet/tcp_fsm.h>
                     40: #include <net/pfvar.h>
                     41: #include <arpa/inet.h>
                     42:
                     43: #include <altq/altq.h>
                     44: #include <altq/altq_cbq.h>
                     45: #include <altq/altq_priq.h>
                     46: #include <altq/altq_hfsc.h>
                     47:
                     48: #include <ctype.h>
                     49: #include <curses.h>
                     50: #include <err.h>
                     51: #include <errno.h>
                     52: #include <fcntl.h>
                     53: #include <netdb.h>
                     54: #include <signal.h>
                     55: #include <stdio.h>
                     56: #include <stdlib.h>
                     57: #include <string.h>
                     58: #include <unistd.h>
                     59: #include <stdarg.h>
                     60:
1.6       canacar    61: #include "systat.h"
1.1       canacar    62: #include "engine.h"
                     63: #include "cache.h"
                     64:
                     65: extern const char *tcpstates[];
                     66:
                     67: #define MIN_NUM_STATES 1024
                     68: #define NUM_STATE_INC  1024
                     69:
                     70: #define DEFAULT_CACHE_SIZE 10000
                     71:
                     72: /* XXX must also check type before use */
                     73: #define PT_ADDR(x) (&(x)->addr.v.a.addr)
                     74:
                     75: /* XXX must also check type before use */
                     76: #define PT_MASK(x) (&(x)->addr.v.a.mask)
                     77:
                     78: #define PT_NOROUTE(x) ((x)->addr.type == PF_ADDR_NOROUTE)
                     79:
                     80: /* view management */
                     81: int select_states(void);
                     82: int read_states(void);
                     83: void sort_states(void);
                     84: void print_states(void);
                     85:
                     86: int select_rules(void);
                     87: int read_rules(void);
                     88: void print_rules(void);
                     89:
                     90: int print_header(void);
                     91: int keyboard_callback(int ch);
                     92:
                     93: int select_queues(void);
                     94: int read_queues(void);
                     95: void print_queues(void);
                     96:
1.7     ! canacar    97: void update_cache(void);
        !            98:
1.1       canacar    99: /* qsort callbacks */
                    100: int sort_size_callback(const void *s1, const void *s2);
                    101: int sort_exp_callback(const void *s1, const void *s2);
                    102: int sort_pkt_callback(const void *s1, const void *s2);
                    103: int sort_age_callback(const void *s1, const void *s2);
                    104: int sort_sa_callback(const void *s1, const void *s2);
                    105: int sort_sp_callback(const void *s1, const void *s2);
                    106: int sort_da_callback(const void *s1, const void *s2);
                    107: int sort_dp_callback(const void *s1, const void *s2);
                    108: int sort_rate_callback(const void *s1, const void *s2);
                    109: int sort_peak_callback(const void *s1, const void *s2);
                    110: int pf_dev = -1;
                    111:
                    112: struct sc_ent **state_cache = NULL;
1.4       canacar   113: struct pfsync_state *state_buf = NULL;
1.1       canacar   114: int state_buf_len = 0;
                    115: u_int32_t *state_ord = NULL;
                    116: u_int32_t num_states = 0;
                    117: u_int32_t num_states_all = 0;
                    118: u_int32_t num_rules = 0;
                    119: u_int32_t num_queues = 0;
                    120: int cachestates = 0;
                    121:
                    122: char *filter_string = NULL;
                    123: int dumpfilter = 0;
                    124:
                    125: #define MIN_LABEL_SIZE 5
                    126: #define ANCHOR_FLD_SIZE 12
                    127:
                    128: /* Define fields */
                    129: field_def fields[] = {
                    130:        {"SRC", 20, 45, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
                    131:        {"DEST", 20, 45, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
                    132:        {"GW", 20, 45, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
                    133:        {"STATE", 5, 23, 18, FLD_ALIGN_COLUMN, -1, 0, 0, 0},
                    134:        {"AGE", 5, 9, 4, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
                    135:        {"EXP", 5, 9, 4, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
                    136:        {"PR ", 4, 9, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
                    137:        {"DIR", 1, 3, 2, FLD_ALIGN_CENTER, -1, 0, 0, 0},
                    138:        {"PKTS", 5, 8, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
                    139:        {"BYTES", 5, 8, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
                    140:        {"RULE", 2, 4, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
                    141:        {"LABEL", MIN_LABEL_SIZE, MIN_LABEL_SIZE, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
                    142:        {"STATES", 5, 8, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
                    143:        {"EVAL", 5, 8, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
                    144:        {"ACTION", 1, 8, 4, FLD_ALIGN_LEFT, -1, 0, 0, 0},
                    145:        {"LOG", 1, 3, 2, FLD_ALIGN_LEFT, -1, 0, 0, 0},
                    146:        {"QUICK", 1, 1, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
                    147:        {"KS", 1, 1, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
                    148:        {"IF", 4, 6, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
                    149:        {"INFO", 40, 80, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
1.4       canacar   150:        {"MAX", 3, 5, 2, FLD_ALIGN_RIGHT, -1, 0, 0},
1.1       canacar   151:        {"RATE", 5, 8, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
                    152:        {"AVG", 5, 8, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
                    153:        {"PEAK", 5, 8, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
1.4       canacar   154:        {"ANCHOR", 6, 16, 1, FLD_ALIGN_LEFT, -1, 0, 0},
1.1       canacar   155:        {"QUEUE", 15, 30, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
                    156:        {"BW", 4, 5, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
                    157:        {"SCH", 3, 4, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
                    158:        {"PRIO", 1, 4, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
                    159:        {"DROP_P", 6, 8, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
                    160:        {"DROP_B", 6, 8, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
                    161:        {"QLEN", 4, 4, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
                    162:        {"BORROW", 4, 6, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
                    163:        {"SUSPENDS", 4, 6, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
                    164:        {"P/S", 3, 7, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
                    165:        {"B/S", 4, 7, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0}
                    166: };
                    167:
                    168:
                    169: #define FIELD_ADDR(x) (&fields[x])
                    170:
                    171: /* for states */
                    172: #define FLD_SRC     FIELD_ADDR(0)
                    173: #define FLD_DEST    FIELD_ADDR(1)
                    174: #define FLD_GW      FIELD_ADDR(2)
                    175: #define FLD_STATE   FIELD_ADDR(3)
                    176: #define FLD_AGE     FIELD_ADDR(4)
                    177: #define FLD_EXP     FIELD_ADDR(5)
                    178: /* common */
                    179: #define FLD_PROTO   FIELD_ADDR(6)
                    180: #define FLD_DIR     FIELD_ADDR(7)
                    181: #define FLD_PKTS    FIELD_ADDR(8)
                    182: #define FLD_BYTES   FIELD_ADDR(9)
                    183: #define FLD_RULE    FIELD_ADDR(10)
                    184: /* for rules */
                    185: #define FLD_LABEL   FIELD_ADDR(11)
                    186: #define FLD_STATS   FIELD_ADDR(12)
                    187: #define FLD_EVAL    FIELD_ADDR(13)
                    188: #define FLD_ACTION  FIELD_ADDR(14)
                    189: #define FLD_LOG     FIELD_ADDR(15)
                    190: #define FLD_QUICK   FIELD_ADDR(16)
                    191: #define FLD_KST     FIELD_ADDR(17)
                    192: #define FLD_IF      FIELD_ADDR(18)
                    193: #define FLD_RINFO   FIELD_ADDR(19)
                    194: #define FLD_STMAX   FIELD_ADDR(20)
                    195: /* other */
                    196: #define FLD_SI      FIELD_ADDR(21)    /* instantaneous speed */
                    197: #define FLD_SA      FIELD_ADDR(22)    /* average speed */
                    198: #define FLD_SP      FIELD_ADDR(23)    /* peak speed */
                    199: #define FLD_ANCHOR  FIELD_ADDR(24)
                    200: /* for queues */
                    201: #define FLD_QUEUE   FIELD_ADDR(25)
                    202: #define FLD_BANDW   FIELD_ADDR(26)
                    203: #define FLD_SCHED   FIELD_ADDR(27)
                    204: #define FLD_PRIO    FIELD_ADDR(28)
                    205: #define FLD_DROPP   FIELD_ADDR(29)
                    206: #define FLD_DROPB   FIELD_ADDR(30)
                    207: #define FLD_QLEN    FIELD_ADDR(31)
                    208: #define FLD_BORR    FIELD_ADDR(32)
                    209: #define FLD_SUSP    FIELD_ADDR(33)
                    210: #define FLD_PKTSPS  FIELD_ADDR(34)
                    211: #define FLD_BYTESPS FIELD_ADDR(35)
                    212:
                    213: /* Define views */
                    214: field_def *view0[] = {
                    215:        FLD_PROTO, FLD_DIR, FLD_SRC, FLD_DEST, FLD_STATE,
                    216:        FLD_AGE, FLD_EXP, FLD_PKTS, FLD_BYTES, NULL
                    217: };
                    218:
                    219: field_def *view1[] = {
                    220:        FLD_PROTO, FLD_DIR, FLD_SRC, FLD_DEST, FLD_GW, FLD_STATE, FLD_AGE,
                    221:        FLD_EXP, FLD_PKTS, FLD_BYTES, FLD_SI, FLD_SP, FLD_SA, FLD_RULE, NULL
                    222: };
                    223:
                    224: field_def *view2[] = {
                    225:        FLD_PROTO, FLD_DIR, FLD_SRC, FLD_DEST, FLD_STATE, FLD_AGE, FLD_EXP,
                    226:        FLD_PKTS, FLD_BYTES, FLD_SI, FLD_SP, FLD_SA, FLD_RULE, FLD_GW, NULL
                    227: };
                    228:
                    229: field_def *view3[] = {
                    230:        FLD_PROTO, FLD_DIR, FLD_SRC, FLD_DEST, FLD_AGE, FLD_EXP, FLD_PKTS,
                    231:        FLD_BYTES, FLD_STATE, FLD_SI, FLD_SP, FLD_SA, FLD_RULE, FLD_GW, NULL
                    232: };
                    233:
                    234: field_def *view4[] = {
                    235:        FLD_PROTO, FLD_DIR, FLD_SRC, FLD_DEST, FLD_PKTS, FLD_BYTES, FLD_STATE,
                    236:        FLD_AGE, FLD_EXP, FLD_SI, FLD_SP, FLD_SA, FLD_RULE, FLD_GW, NULL
                    237: };
                    238:
                    239: field_def *view5[] = {
                    240:        FLD_RULE, FLD_ANCHOR, FLD_ACTION, FLD_DIR, FLD_LOG, FLD_QUICK, FLD_IF,
                    241:        FLD_PROTO, FLD_KST, FLD_PKTS, FLD_BYTES, FLD_STATS, FLD_STMAX,
                    242:        FLD_RINFO, NULL
                    243: };
                    244:
                    245: field_def *view6[] = {
                    246:        FLD_RULE, FLD_LABEL, FLD_PKTS, FLD_BYTES, FLD_STATS, FLD_STMAX,
                    247:        FLD_ACTION, FLD_DIR, FLD_LOG, FLD_QUICK, FLD_IF, FLD_PROTO,
                    248:        FLD_ANCHOR, FLD_KST, NULL
                    249: };
                    250:
                    251: field_def *view7[] = {
                    252:        FLD_PROTO, FLD_DIR, FLD_SRC, FLD_DEST,  FLD_SI, FLD_SP, FLD_SA,
                    253:        FLD_BYTES, FLD_STATE, FLD_PKTS, FLD_AGE, FLD_EXP, FLD_RULE, FLD_GW, NULL
                    254: };
                    255:
                    256: field_def *view8[] = {
                    257:        FLD_QUEUE, FLD_BANDW, FLD_SCHED, FLD_PRIO, FLD_PKTS, FLD_BYTES,
                    258:        FLD_DROPP, FLD_DROPB, FLD_QLEN, FLD_BORR, FLD_SUSP, FLD_PKTSPS,
                    259:        FLD_BYTESPS, NULL
                    260: };
                    261:
                    262: /* Define orderings */
                    263: order_type order_list[] = {
                    264:        {"none", "none", 'N', NULL},
                    265:        {"bytes", "bytes", 'B', sort_size_callback},
                    266:        {"expiry", "exp", 'E', sort_exp_callback},
                    267:        {"packets", "pkt", 'P', sort_pkt_callback},
                    268:        {"age", "age", 'A', sort_age_callback},
                    269:        {"source addr", "src", 'F', sort_sa_callback},
                    270:        {"dest. addr", "dest", 'T', sort_da_callback},
                    271:        {"source port", "sport", 'S', sort_sp_callback},
                    272:        {"dest. port", "dport", 'D', sort_dp_callback},
                    273:        {"rate", "rate", 'R', sort_rate_callback},
                    274:        {"peak", "peak", 'K', sort_peak_callback},
                    275:        {NULL, NULL, 0, NULL}
                    276: };
                    277:
                    278: /* Define view managers */
                    279: struct view_manager state_mgr = {
                    280:        "States", select_states, read_states, sort_states, print_header,
                    281:        print_states, keyboard_callback, order_list, NULL
                    282: };
                    283:
                    284: struct view_manager rule_mgr = {
                    285:        "Rules", select_rules, read_rules, NULL, print_header,
                    286:        print_rules, keyboard_callback, NULL, NULL
                    287: };
                    288:
                    289: struct view_manager queue_mgr = {
                    290:        "Queues", select_queues, read_queues, NULL, print_header,
                    291:        print_queues, keyboard_callback, NULL, NULL
                    292: };
                    293:
                    294: field_view views[] = {
                    295:        {view2, "states", '8', &state_mgr},
                    296:        {view5, "rules", '9', &rule_mgr},
                    297:        {view8, "queues", 'Q', &queue_mgr},
                    298:        {NULL, NULL, 0, NULL}
                    299: };
                    300:
                    301:
                    302: /* altq structures from pfctl */
                    303:
                    304: union class_stats {
                    305:        class_stats_t           cbq_stats;
                    306:        struct priq_classstats  priq_stats;
                    307:        struct hfsc_classstats  hfsc_stats;
                    308: };
                    309:
                    310: struct queue_stats {
                    311:        union class_stats        data;
                    312:        struct timeval           timestamp;
                    313:        u_int8_t                 valid;
                    314: };
                    315:
                    316: struct pf_altq_node {
                    317:        struct pf_altq           altq;
                    318:        struct pf_altq_node     *next;
                    319:        struct pf_altq_node     *children;
                    320:        struct pf_altq_node     *next_flat;
                    321:        struct queue_stats       qstats;
                    322:        struct queue_stats       qstats_last;
                    323:        u_int8_t                 depth;
                    324:        u_int8_t                 visited;
                    325: };
                    326:
                    327:
                    328: /* ordering functions */
                    329:
                    330: int
                    331: sort_size_callback(const void *s1, const void *s2)
                    332: {
                    333:        u_int64_t b1 = COUNTER(state_buf[* (u_int32_t *) s1].bytes[0]) +
                    334:                COUNTER(state_buf[* (u_int32_t *) s1].bytes[1]);
                    335:        u_int64_t b2 = COUNTER(state_buf[* (u_int32_t *) s2].bytes[0]) +
                    336:                COUNTER(state_buf[* (u_int32_t *) s2].bytes[1]);
                    337:        if (b2 > b1)
                    338:                return sortdir;
                    339:        if (b2 < b1)
                    340:                return -sortdir;
                    341:        return 0;
                    342: }
                    343:
                    344: int
                    345: sort_pkt_callback(const void *s1, const void *s2)
                    346: {
                    347:        u_int64_t p1 = COUNTER(state_buf[* (u_int32_t *) s1].packets[0]) +
                    348:                COUNTER(state_buf[* (u_int32_t *) s1].packets[1]);
                    349:        u_int64_t p2 = COUNTER(state_buf[* (u_int32_t *) s2].packets[0]) +
                    350:                COUNTER(state_buf[* (u_int32_t *) s2].packets[1]);
                    351:        if (p2 > p1)
                    352:                return sortdir;
                    353:        if (p2 < p1)
                    354:                return -sortdir;
                    355:        return 0;
                    356: }
                    357:
                    358: int
                    359: sort_age_callback(const void *s1, const void *s2)
                    360: {
1.3       mcbride   361:        if (ntohl(state_buf[* (u_int32_t *) s2].creation) >
                    362:            ntohl(state_buf[* (u_int32_t *) s1].creation))
1.1       canacar   363:                return sortdir;
1.3       mcbride   364:        if (ntohl(state_buf[* (u_int32_t *) s2].creation) <
                    365:            ntohl(state_buf[* (u_int32_t *) s1].creation))
1.1       canacar   366:                return -sortdir;
                    367:        return 0;
                    368: }
                    369:
                    370: int
                    371: sort_exp_callback(const void *s1, const void *s2)
                    372: {
1.3       mcbride   373:        if (ntohl(state_buf[* (u_int32_t *) s2].expire) >
                    374:            ntohl(state_buf[* (u_int32_t *) s1].expire))
1.1       canacar   375:                return sortdir;
1.3       mcbride   376:        if (ntohl(state_buf[* (u_int32_t *) s2].expire) <
                    377:            ntohl(state_buf[* (u_int32_t *) s1].expire))
1.1       canacar   378:                return -sortdir;
                    379:        return 0;
                    380: }
                    381:
                    382: int
                    383: sort_rate_callback(const void *s1, const void *s2)
                    384: {
                    385:        struct sc_ent *e1 = state_cache[* (u_int32_t *) s1];
                    386:        struct sc_ent *e2 = state_cache[* (u_int32_t *) s2];
                    387:
                    388:        if (e1 == NULL)
                    389:                return sortdir;
                    390:        if (e2 == NULL)
                    391:                return -sortdir;
                    392:
                    393:        if (e2->rate > e1 -> rate)
                    394:                return sortdir;
                    395:        if (e2->rate < e1 -> rate)
                    396:                return -sortdir;
                    397:        return 0;
                    398: }
                    399:
                    400: int
                    401: sort_peak_callback(const void *s1, const void *s2)
                    402: {
                    403:        struct sc_ent *e1 = state_cache[* (u_int32_t *) s1];
                    404:        struct sc_ent *e2 = state_cache[* (u_int32_t *) s2];
                    405:
                    406:        if (e2 == NULL)
                    407:                return -sortdir;
                    408:        if (e1 == NULL || e2 == NULL)
                    409:                return 0;
                    410:
                    411:        if (e2->peak > e1 -> peak)
                    412:                return sortdir;
                    413:        if (e2->peak < e1 -> peak)
                    414:                return -sortdir;
                    415:        return 0;
                    416: }
                    417:
                    418: int
                    419: compare_addr(int af, const struct pf_addr *a, const struct pf_addr *b)
                    420: {
                    421:        switch (af) {
                    422:        case AF_INET:
                    423:                if (ntohl(a->addr32[0]) > ntohl(b->addr32[0]))
                    424:                        return 1;
                    425:                if (a->addr32[0] != b->addr32[0])
                    426:                        return -1;
                    427:                break;
                    428:        case AF_INET6:
                    429:                if (ntohl(a->addr32[0]) > ntohl(b->addr32[0]))
                    430:                        return 1;
                    431:                if (a->addr32[0] != b->addr32[0])
                    432:                        return -1;
                    433:                if (ntohl(a->addr32[1]) > ntohl(b->addr32[1]))
                    434:                        return 1;
                    435:                if (a->addr32[1] != b->addr32[1])
                    436:                        return -1;
                    437:                if (ntohl(a->addr32[2]) > ntohl(b->addr32[2]))
                    438:                        return 1;
                    439:                if (a->addr32[2] != b->addr32[2])
                    440:                        return -1;
                    441:                if (ntohl(a->addr32[3]) > ntohl(b->addr32[3]))
                    442:                        return 1;
                    443:                if (a->addr32[3] != b->addr32[3])
                    444:                        return -1;
                    445:                break;
                    446:        }
                    447:
                    448:        return 0;
                    449: }
                    450:
1.4       canacar   451: __inline int
                    452: sort_addr_callback(const struct pfsync_state *s1,
                    453:                   const struct pfsync_state *s2, int dir)
1.1       canacar   454: {
                    455:        const struct pf_addr *aa, *ab;
                    456:        u_int16_t pa, pb;
                    457:        int af, ret, ii, io;
                    458:
                    459:        af = s1->af;
                    460:
                    461:        if (af > s2->af)
                    462:                return sortdir;
                    463:        if (af < s2->af)
                    464:                return -sortdir;
                    465:
                    466:                ii = io = 0;
                    467:
                    468:        if (dir == PF_OUT)      /* looking for source addr */
                    469:                io = 1;
                    470:        else                    /* looking for dest addr */
                    471:                ii = 1;
                    472:
                    473:        if (s1->direction == PF_IN) {
                    474:                aa = &s1->key[PF_SK_STACK].addr[ii];
                    475:                pa =  s1->key[PF_SK_STACK].port[ii];
                    476:        } else {
                    477:                aa = &s1->key[PF_SK_WIRE].addr[io];
                    478:                pa =  s1->key[PF_SK_WIRE].port[io];
                    479:        }
                    480:
                    481:        if (s2->direction == PF_IN) {
                    482:                ab = &s2->key[PF_SK_STACK].addr[ii];;
                    483:                pb =  s2->key[PF_SK_STACK].port[ii];
                    484:        } else {
                    485:                ab = &s2->key[PF_SK_WIRE].addr[io];;
                    486:                pb =  s2->key[PF_SK_WIRE].port[io];
                    487:        }
                    488:
                    489:        ret = compare_addr(af, aa, ab);
                    490:        if (ret)
                    491:                return ret * sortdir;
                    492:
                    493:        if (ntohs(pa) > ntohs(pb))
                    494:                return sortdir;
                    495:        return -sortdir;
                    496: }
                    497:
1.4       canacar   498: __inline int
                    499: sort_port_callback(const struct pfsync_state *s1,
                    500:                   const struct pfsync_state *s2, int dir)
1.1       canacar   501: {
                    502:        const struct pf_addr *aa, *ab;
                    503:        u_int16_t pa, pb;
                    504:        int af, ret, ii, io;
                    505:
                    506:        af = s1->af;
                    507:
                    508:
                    509:        if (af > s2->af)
                    510:                return sortdir;
                    511:        if (af < s2->af)
                    512:                return -sortdir;
                    513:
                    514:                ii = io = 0;
                    515:
                    516:        if (dir == PF_OUT)      /* looking for source addr */
                    517:                io = 1;
                    518:        else                    /* looking for dest addr */
                    519:                ii = 1;
                    520:
                    521:        if (s1->direction == PF_IN) {
                    522:                aa = &s1->key[PF_SK_STACK].addr[ii];
                    523:                pa =  s1->key[PF_SK_STACK].port[ii];
                    524:        } else {
                    525:                aa = &s1->key[PF_SK_WIRE].addr[io];
                    526:                pa =  s1->key[PF_SK_WIRE].port[io];
                    527:        }
                    528:
                    529:        if (s2->direction == PF_IN) {
                    530:                ab = &s2->key[PF_SK_STACK].addr[ii];;
                    531:                pb =  s2->key[PF_SK_STACK].port[ii];
                    532:        } else {
                    533:                ab = &s2->key[PF_SK_WIRE].addr[io];;
                    534:                pb =  s2->key[PF_SK_WIRE].port[io];
                    535:        }
                    536:
                    537:
                    538:        if (ntohs(pa) > ntohs(pb))
                    539:                return sortdir;
                    540:        if (ntohs(pa) < ntohs(pb))
                    541:                return - sortdir;
                    542:
                    543:        ret = compare_addr(af, aa, ab);
                    544:        if (ret)
                    545:                return ret * sortdir;
                    546:        return -sortdir;
                    547: }
                    548:
                    549: int
1.4       canacar   550: sort_sa_callback(const void *p1, const void *p2)
1.1       canacar   551: {
1.4       canacar   552:        struct pfsync_state *s1 = state_buf + (* (u_int32_t *) p1);
                    553:        struct pfsync_state *s2 = state_buf + (* (u_int32_t *) p2);
                    554:        return sort_addr_callback(s1, s2, PF_OUT);
1.1       canacar   555: }
                    556:
                    557: int
1.4       canacar   558: sort_da_callback(const void *p1, const void *p2)
1.1       canacar   559: {
1.4       canacar   560:        struct pfsync_state *s1 = state_buf + (* (u_int32_t *) p1);
                    561:        struct pfsync_state *s2 = state_buf + (* (u_int32_t *) p2);
1.1       canacar   562:        return sort_addr_callback(s1, s2, PF_IN);
                    563: }
                    564:
                    565: int
                    566: sort_sp_callback(const void *p1, const void *p2)
                    567: {
1.4       canacar   568:        struct pfsync_state *s1 = state_buf + (* (u_int32_t *) p1);
                    569:        struct pfsync_state *s2 = state_buf + (* (u_int32_t *) p2);
1.1       canacar   570:        return sort_port_callback(s1, s2, PF_OUT);
                    571: }
                    572:
                    573: int
                    574: sort_dp_callback(const void *p1, const void *p2)
                    575: {
1.4       canacar   576:        struct pfsync_state *s1 = state_buf + (* (u_int32_t *) p1);
                    577:        struct pfsync_state *s2 = state_buf + (* (u_int32_t *) p2);
1.1       canacar   578:        return sort_port_callback(s1, s2, PF_IN);
                    579: }
                    580:
                    581: void
                    582: sort_states(void)
                    583: {
                    584:        order_type *ordering;
                    585:
                    586:        if (curr_mgr == NULL)
                    587:                return;
                    588:
                    589:        ordering = curr_mgr->order_curr;
                    590:
                    591:        if (ordering == NULL)
                    592:                return;
                    593:        if (ordering->func == NULL)
                    594:                return;
                    595:        if (state_buf == NULL)
                    596:                return;
                    597:        if (num_states <= 0)
                    598:                return;
                    599:
                    600:        mergesort(state_ord, num_states, sizeof(u_int32_t), ordering->func);
                    601: }
                    602:
                    603: /* state management functions */
                    604:
                    605: void
                    606: alloc_buf(int ns)
                    607: {
                    608:        int len;
                    609:
                    610:        if (ns < MIN_NUM_STATES)
                    611:                ns = MIN_NUM_STATES;
                    612:
                    613:        len = ns;
                    614:
                    615:        if (len >= state_buf_len) {
                    616:                len += NUM_STATE_INC;
1.4       canacar   617:                state_buf = realloc(state_buf, len * sizeof(struct pfsync_state));
1.1       canacar   618:                state_ord = realloc(state_ord, len * sizeof(u_int32_t));
                    619:                state_cache = realloc(state_cache,
                    620:                                      len * sizeof(struct sc_ent *));
                    621:                if (state_buf == NULL || state_ord == NULL ||
                    622:                    state_cache == NULL)
                    623:                        err(1, "realloc");
                    624:                state_buf_len = len;
                    625:        }
                    626: }
                    627:
                    628: int
                    629: select_states(void)
                    630: {
                    631:        num_disp = num_states;
                    632:        return (0);
                    633: }
                    634:
                    635: int
                    636: read_states(void)
                    637: {
                    638:        struct pfioc_states ps;
                    639:        int n;
                    640:
                    641:        if (pf_dev == -1)
                    642:                return -1;
                    643:
                    644:        for (;;) {
1.4       canacar   645:                int sbytes = state_buf_len * sizeof(struct pfsync_state);
1.1       canacar   646:
                    647:                ps.ps_len = sbytes;
                    648:                ps.ps_buf = (char *) state_buf;
                    649:
                    650:                if (ioctl(pf_dev, DIOCGETSTATES, &ps) < 0) {
                    651:                        error("DIOCGETSTATES");
                    652:                }
1.4       canacar   653:                num_states_all = ps.ps_len / sizeof(struct pfsync_state);
1.1       canacar   654:
                    655:                if (ps.ps_len < sbytes)
                    656:                        break;
                    657:
                    658:                alloc_buf(num_states_all);
                    659:        }
                    660:
                    661:        if (dumpfilter) {
                    662:                int fd = open("state.dmp", O_WRONLY|O_CREAT|O_EXCL, 0);
                    663:                if (fd > 0) {
                    664:                        write(fd, state_buf, ps.ps_len);
                    665:                        close(fd);
                    666:                }
                    667:        }
                    668:
                    669:        num_states =  num_states_all;
                    670:        for (n = 0; n<num_states_all; n++)
                    671:                state_ord[n] = n;
                    672:
                    673:        if (cachestates) {
                    674:                for (n = 0; n < num_states; n++)
                    675:                        state_cache[n] = cache_state(state_buf + n);
                    676:                cache_endupdate();
                    677:        }
                    678:
                    679:        num_disp = num_states;
                    680:        return 0;
                    681: }
                    682:
                    683: int
                    684: unmask(struct pf_addr * m, u_int8_t af)
                    685: {
                    686:        int i = 31, j = 0, b = 0, msize;
                    687:        u_int32_t tmp;
                    688:
                    689:        if (af == AF_INET)
                    690:                msize = 1;
                    691:        else
                    692:                msize = 4;
                    693:        while (j < msize && m->addr32[j] == 0xffffffff) {
                    694:                b += 32;
                    695:                j++;
                    696:        }
                    697:        if (j < msize) {
                    698:                tmp = ntohl(m->addr32[j]);
                    699:                for (i = 31; tmp & (1 << i); --i)
                    700:                        b++;
                    701:        }
                    702:        return (b);
                    703: }
                    704:
                    705: /* display functions */
                    706:
                    707: void
                    708: tb_print_addr(struct pf_addr * addr, struct pf_addr * mask, int af)
                    709: {
                    710:        static char buf[48];
                    711:        const char *bf;
                    712:
                    713:        bf = inet_ntop(af, addr, buf, sizeof(buf));
                    714:        tbprintf("%s", bf);
                    715:
                    716:        if (mask != NULL) {
                    717:                if (!PF_AZERO(mask, af))
                    718:                        tbprintf("/%u", unmask(mask, af));
                    719:        }
                    720: }
1.4       canacar   721:
1.1       canacar   722: void
                    723: print_fld_host2(field_def *fld, struct pfsync_state_key *ks,
                    724:                struct pfsync_state_key *kn, int idx, int af)
                    725: {
                    726:        struct pf_addr *as = &ks->addr[idx];
                    727:        struct pf_addr *an = &kn->addr[idx];
                    728:
                    729:        u_int16_t ps = ntohs(ks->port[idx]);
                    730:        u_int16_t pn = ntohs(kn->port[idx]);
                    731:
                    732:        if (fld == NULL)
                    733:                return;
                    734:
                    735:        if (fld->width < 3) {
                    736:                print_fld_str(fld, "*");
                    737:                return;
                    738:        }
                    739:
                    740:        tb_start();
                    741:        tb_print_addr(as, NULL, af);
                    742:
                    743:        if (af == AF_INET)
                    744:                tbprintf(":%u", ps);
                    745:        else
                    746:                tbprintf("[%u]", ps);
                    747:
                    748:        print_fld_tb(fld);
                    749:
                    750:        if (PF_ANEQ(as, an, af) || ps != pn) {
                    751:                tb_start();
                    752:                tb_print_addr(an, NULL, af);
                    753:
                    754:                if (af == AF_INET)
                    755:                        tbprintf(":%u", pn);
                    756:                else
                    757:                        tbprintf("[%u]", pn);
                    758:                print_fld_tb(FLD_GW);
                    759:        }
                    760:
                    761: }
                    762:
                    763: void
                    764: print_fld_state(field_def *fld, unsigned int proto,
                    765:                unsigned int s1, unsigned int s2)
                    766: {
                    767:        int len;
                    768:
                    769:        if (fld == NULL)
                    770:                return;
                    771:
                    772:        len = fld->width;
                    773:        if (len < 1)
                    774:                return;
                    775:
                    776:        tb_start();
                    777:
                    778:        if (proto == IPPROTO_TCP) {
                    779:                if (s1 <= TCPS_TIME_WAIT && s2 <= TCPS_TIME_WAIT)
                    780:                        tbprintf("%s:%s", tcpstates[s1], tcpstates[s2]);
                    781: #ifdef PF_TCPS_PROXY_SRC
                    782:                else if (s1 == PF_TCPS_PROXY_SRC ||
                    783:                           s2 == PF_TCPS_PROXY_SRC)
                    784:                        tbprintf("PROXY:SRC\n");
                    785:                else if (s1 == PF_TCPS_PROXY_DST ||
                    786:                         s2 == PF_TCPS_PROXY_DST)
                    787:                        tbprintf("PROXY:DST\n");
                    788: #endif
                    789:                else
                    790:                        tbprintf("<BAD STATE LEVELS>");
                    791:        } else if (proto == IPPROTO_UDP && s1 < PFUDPS_NSTATES &&
                    792:                   s2 < PFUDPS_NSTATES) {
                    793:                const char *states[] = PFUDPS_NAMES;
                    794:                tbprintf("%s:%s", states[s1], states[s2]);
                    795:        } else if (proto != IPPROTO_ICMP && s1 < PFOTHERS_NSTATES &&
                    796:                   s2 < PFOTHERS_NSTATES) {
                    797:                /* XXX ICMP doesn't really have state levels */
                    798:                const char *states[] = PFOTHERS_NAMES;
                    799:                tbprintf("%s:%s", states[s1], states[s2]);
                    800:        } else {
                    801:                tbprintf("%u:%u", s1, s2);
                    802:        }
                    803:
                    804:        if (strlen(tmp_buf) > len) {
                    805:                tb_start();
                    806:                tbprintf("%u:%u", s1, s2);
                    807:        }
                    808:
                    809:        print_fld_tb(fld);
                    810: }
                    811:
                    812: int
1.4       canacar   813: print_state(struct pfsync_state * s, struct sc_ent * ent)
1.1       canacar   814: {
1.4       canacar   815:        struct pfsync_state_peer *src, *dst;
1.1       canacar   816:        struct protoent *p;
1.4       canacar   817:        u_int64_t sz;
1.1       canacar   818:
                    819:        if (s->direction == PF_OUT) {
                    820:                src = &s->src;
                    821:                dst = &s->dst;
                    822:        } else {
                    823:                src = &s->dst;
                    824:                dst = &s->src;
                    825:        }
                    826:
                    827:        p = getprotobynumber(s->proto);
                    828:
                    829:        if (p != NULL)
                    830:                print_fld_str(FLD_PROTO, p->p_name);
                    831:        else
                    832:                print_fld_uint(FLD_PROTO, s->proto);
                    833:
                    834:        if (s->direction == PF_OUT) {
                    835:                print_fld_host2(FLD_SRC, &s->key[PF_SK_WIRE],
                    836:                    &s->key[PF_SK_STACK], 1, s->af);
                    837:                print_fld_host2(FLD_DEST, &s->key[PF_SK_WIRE],
                    838:                    &s->key[PF_SK_STACK], 0, s->af);
                    839:        } else {
                    840:                print_fld_host2(FLD_SRC, &s->key[PF_SK_STACK],
                    841:                    &s->key[PF_SK_WIRE], 0, s->af);
                    842:                print_fld_host2(FLD_DEST, &s->key[PF_SK_STACK],
                    843:                    &s->key[PF_SK_WIRE], 1, s->af);
                    844:        }
                    845:
                    846:        if (s->direction == PF_OUT)
                    847:                print_fld_str(FLD_DIR, "Out");
                    848:        else
                    849:                print_fld_str(FLD_DIR, "In");
                    850:
                    851:        print_fld_state(FLD_STATE, s->proto, src->state, dst->state);
1.3       mcbride   852:        print_fld_age(FLD_AGE, ntohl(s->creation));
                    853:        print_fld_age(FLD_EXP, ntohl(s->expire));
1.4       canacar   854:
                    855:        sz = COUNTER(s->bytes[0]) + COUNTER(s->bytes[1]);
                    856:
                    857:        print_fld_size(FLD_PKTS, COUNTER(s->packets[0]) +
                    858:                       COUNTER(s->packets[1]));
                    859:        print_fld_size(FLD_BYTES, sz);
1.3       mcbride   860:        print_fld_rate(FLD_SA, (s->creation) ?
1.4       canacar   861:                       ((double)sz/ntohl((double)s->creation)) : -1);
1.1       canacar   862:
                    863:        print_fld_uint(FLD_RULE, s->rule);
                    864:        if (cachestates && ent != NULL) {
                    865:                print_fld_rate(FLD_SI, ent->rate);
                    866:                print_fld_rate(FLD_SP, ent->peak);
                    867:        }
                    868:
                    869:        end_line();
                    870:        return 1;
                    871: }
                    872:
                    873: void
                    874: print_states(void)
                    875: {
                    876:        int n, count = 0;
                    877:
                    878:        for (n = dispstart; n < num_disp; n++) {
                    879:                count += print_state(state_buf + state_ord[n],
                    880:                                     state_cache[state_ord[n]]);
                    881:                if (maxprint > 0 && count >= maxprint)
                    882:                        break;
                    883:        }
                    884: }
                    885:
                    886: /* rule display */
                    887:
                    888: struct pf_rule *rules = NULL;
                    889: u_int32_t alloc_rules = 0;
                    890:
                    891: int
                    892: select_rules(void)
                    893: {
                    894:        num_disp = num_rules;
                    895:        return (0);
                    896: }
                    897:
                    898:
                    899: void
                    900: add_rule_alloc(u_int32_t nr)
                    901: {
                    902:        if (nr == 0)
                    903:                return;
                    904:
                    905:        num_rules += nr;
                    906:
                    907:        if (rules == NULL) {
                    908:                rules = malloc(num_rules * sizeof(struct pf_rule));
                    909:                if (rules == NULL)
                    910:                        err(1, "malloc");
                    911:                alloc_rules = num_rules;
                    912:        } else if (num_rules > alloc_rules) {
                    913:                rules = realloc(rules, num_rules * sizeof(struct pf_rule));
                    914:                if (rules == NULL)
                    915:                        err(1, "realloc");
                    916:                alloc_rules = num_rules;
                    917:        }
                    918: }
                    919:
                    920: int label_length;
                    921:
                    922: int
                    923: read_anchor_rules(char *anchor)
                    924: {
                    925:        struct pfioc_rule pr;
                    926:        u_int32_t nr, num, off;
1.4       canacar   927:        int len;
1.1       canacar   928:
                    929:        if (pf_dev < 0)
                    930:                return (-1);
                    931:
                    932:        memset(&pr, 0, sizeof(pr));
                    933:        strlcpy(pr.anchor, anchor, sizeof(pr.anchor));
1.4       canacar   934:
1.1       canacar   935:        if (ioctl(pf_dev, DIOCGETRULES, &pr)) {
                    936:                error("anchor %s: %s", anchor, strerror(errno));
                    937:                return (-1);
                    938:        }
                    939:
                    940:        off = num_rules;
                    941:        num = pr.nr;
                    942:        add_rule_alloc(num);
                    943:
                    944:        for (nr = 0; nr < num; ++nr) {
                    945:                pr.nr = nr;
                    946:                if (ioctl(pf_dev, DIOCGETRULE, &pr)) {
                    947:                        error("DIOCGETRULE: %s", strerror(errno));
                    948:                        return (-1);
                    949:                }
                    950:                /* XXX overload pr.anchor, to store a pointer to
                    951:                 * anchor name */
                    952:                pr.rule.anchor = (struct pf_anchor *) anchor;
1.4       canacar   953:                len = strlen(pr.rule.label);
                    954:                if (len > label_length)
                    955:                        label_length = len;
1.1       canacar   956:                rules[off + nr] = pr.rule;
                    957:        }
                    958:
                    959:        return (num);
                    960: }
                    961:
                    962: struct anchor_name {
                    963:        char name[MAXPATHLEN];
                    964:        struct anchor_name *next;
                    965:        u_int32_t ref;
                    966: };
                    967:
                    968: struct anchor_name *anchor_root = NULL;
                    969: struct anchor_name *anchor_end = NULL;
                    970: struct anchor_name *anchor_free = NULL;
                    971:
                    972: struct anchor_name*
                    973: alloc_anchor_name(const char *path)
                    974: {
                    975:        struct anchor_name *a;
                    976:
                    977:        a = anchor_free;
                    978:        if (a == NULL) {
                    979:                a = (struct anchor_name *)malloc(sizeof(struct anchor_name));
                    980:                if (a == NULL)
                    981:                        return (NULL);
                    982:        } else
                    983:                anchor_free = a->next;
                    984:
                    985:        if (anchor_root == NULL)
                    986:                anchor_end = a;
                    987:
                    988:        a->next = anchor_root;
                    989:        anchor_root = a;
                    990:
                    991:        a->ref = 0;
                    992:        strlcpy(a->name, path, sizeof(a->name));
                    993:        return (a);
                    994: }
                    995:
                    996: void
                    997: reset_anchor_names(void)
                    998: {
                    999:        if (anchor_end == NULL)
                   1000:                return;
                   1001:
                   1002:        anchor_end->next = anchor_free;
                   1003:        anchor_free = anchor_root;
                   1004:        anchor_root = anchor_end = NULL;
                   1005: }
                   1006:
                   1007: struct pfioc_ruleset ruleset;
                   1008: char *rs_end = NULL;
                   1009:
                   1010: int
                   1011: read_rulesets(const char *path)
                   1012: {
                   1013:        char *pre;
                   1014:        struct anchor_name *a;
                   1015:        u_int32_t nr, ns;
                   1016:        int len;
                   1017:
                   1018:        if (path == NULL)
                   1019:                ruleset.path[0] = '\0';
                   1020:        else if (strlcpy(ruleset.path, path, sizeof(ruleset.path)) >=
                   1021:            sizeof(ruleset.path))
                   1022:                 return (-1);
                   1023:
                   1024:        /* a persistent storage for anchor names */
                   1025:        a = alloc_anchor_name(ruleset.path);
                   1026:        if (a == NULL)
                   1027:                return (-1);
                   1028:
                   1029:        len = read_anchor_rules(a->name);
                   1030:        if (len < 0)
                   1031:                return (-1);
                   1032:
                   1033:        a->ref += len;
                   1034:
                   1035:        if (ioctl(pf_dev, DIOCGETRULESETS, &ruleset)) {
                   1036:                error("DIOCGETRULESETS: %s", strerror(errno));
                   1037:                return (-1);
                   1038:        }
                   1039:
                   1040:        ns = ruleset.nr;
                   1041:
                   1042:        if (rs_end == NULL)
                   1043:                rs_end = ruleset.path + sizeof(ruleset.path);
                   1044:
                   1045:        /* 'pre' tracks the previous level on the anchor */
                   1046:        pre = strchr(ruleset.path, 0);
                   1047:        len = rs_end - pre;
                   1048:        if (len < 1)
                   1049:                return (-1);
                   1050:        --len;
                   1051:
                   1052:        for (nr = 0; nr < ns; ++nr) {
                   1053:                ruleset.nr = nr;
                   1054:                if (ioctl(pf_dev, DIOCGETRULESET, &ruleset)) {
                   1055:                        error("DIOCGETRULESET: %s", strerror(errno));
                   1056:                        return (-1);
                   1057:                }
                   1058:                *pre = '/';
                   1059:                if (strlcpy(pre + 1, ruleset.name, len) < len)
                   1060:                        read_rulesets(ruleset.path);
                   1061:                *pre = '\0';
                   1062:        }
                   1063:
                   1064:        return (0);
                   1065: }
                   1066:
                   1067: void
                   1068: compute_anchor_field(void)
                   1069: {
                   1070:        struct anchor_name *a;
                   1071:        int sum, cnt, mx, nx;
                   1072:        sum = cnt = mx = 0;
                   1073:
                   1074:        for (a = anchor_root; a != NULL; a = a->next, cnt++) {
                   1075:                int len;
                   1076:                if (a->ref == 0)
                   1077:                        continue;
                   1078:                len = strlen(a->name);
                   1079:                sum += len;
                   1080:                if (len > mx)
                   1081:                        mx = len;
                   1082:        }
                   1083:
                   1084:        nx = sum/cnt;
                   1085:        if (nx < ANCHOR_FLD_SIZE)
                   1086:                nx = (mx < ANCHOR_FLD_SIZE) ? mx : ANCHOR_FLD_SIZE;
                   1087:
                   1088:        if (FLD_ANCHOR->max_width != mx ||
                   1089:            FLD_ANCHOR->norm_width != nx) {
                   1090:                FLD_ANCHOR->max_width = mx;
                   1091:                FLD_ANCHOR->norm_width = nx;
                   1092:                field_setup();
                   1093:                need_update = 1;
                   1094:        }
                   1095: }
                   1096:
                   1097: int
                   1098: read_rules(void)
                   1099: {
1.4       canacar  1100:        int ret, nw, mw;
1.1       canacar  1101:        num_rules = 0;
                   1102:
                   1103:        if (pf_dev == -1)
                   1104:                return (-1);
                   1105:
                   1106:        label_length = MIN_LABEL_SIZE;
                   1107:
                   1108:        reset_anchor_names();
                   1109:        ret = read_rulesets(NULL);
                   1110:        compute_anchor_field();
                   1111:
1.4       canacar  1112:        nw = mw = label_length;
                   1113:        if (nw > 16)
                   1114:                nw = 16;
                   1115:
                   1116:        if (FLD_LABEL->norm_width != nw ||
                   1117:            FLD_LABEL->max_width != mw) {
                   1118:                FLD_LABEL->norm_width = nw;
                   1119:                FLD_LABEL->max_width = mw;
                   1120:                field_setup();
                   1121:                need_update = 1;
1.1       canacar  1122:        }
                   1123:
                   1124:        num_disp = num_rules;
                   1125:        return (ret);
                   1126: }
                   1127:
                   1128: void
                   1129: tb_print_addrw(struct pf_addr_wrap *addr, struct pf_addr *mask, u_int8_t af)
                   1130: {
                   1131:        switch (addr->type) {
                   1132:        case PF_ADDR_ADDRMASK:
                   1133:                tb_print_addr(&addr->v.a.addr, mask, af);
                   1134:                break;
                   1135:        case  PF_ADDR_NOROUTE:
                   1136:                tbprintf("noroute");
                   1137:                break;
                   1138:        case PF_ADDR_DYNIFTL:
                   1139:                tbprintf("(%s)", addr->v.ifname);
                   1140:                break;
                   1141:        case PF_ADDR_TABLE:
                   1142:                tbprintf("<%s>", addr->v.tblname);
                   1143:                break;
                   1144:        default:
                   1145:                tbprintf("UNKNOWN");
                   1146:                break;
                   1147:        }
                   1148: }
                   1149:
                   1150: void
                   1151: tb_print_op(u_int8_t op, const char *a1, const char *a2)
                   1152: {
                   1153:        if (op == PF_OP_IRG)
                   1154:                tbprintf("%s >< %s ", a1, a2);
                   1155:        else if (op == PF_OP_XRG)
                   1156:                tbprintf("%s <> %s ", a1, a2);
                   1157:        else if (op == PF_OP_RRG)
                   1158:                tbprintf("%s:%s ", a1, a2);
                   1159:        else if (op == PF_OP_EQ)
                   1160:                tbprintf("= %s ", a1);
                   1161:        else if (op == PF_OP_NE)
                   1162:                tbprintf("!= %s ", a1);
                   1163:        else if (op == PF_OP_LT)
                   1164:                tbprintf("< %s ", a1);
                   1165:        else if (op == PF_OP_LE)
                   1166:                tbprintf("<= %s ", a1);
                   1167:        else if (op == PF_OP_GT)
                   1168:                tbprintf("> %s ", a1);
                   1169:        else if (op == PF_OP_GE)
                   1170:                tbprintf(">= %s ", a1);
                   1171: }
                   1172:
                   1173: void
                   1174: tb_print_port(u_int8_t op, u_int16_t p1, u_int16_t p2, char *proto)
                   1175: {
                   1176:        char a1[6], a2[6];
                   1177:        struct servent *s = getservbyport(p1, proto);
                   1178:
                   1179:        p1 = ntohs(p1);
                   1180:        p2 = ntohs(p2);
                   1181:        snprintf(a1, sizeof(a1), "%u", p1);
                   1182:        snprintf(a2, sizeof(a2), "%u", p2);
                   1183:        tbprintf("port ");
                   1184:        if (s != NULL && (op == PF_OP_EQ || op == PF_OP_NE))
                   1185:                tb_print_op(op, s->s_name, a2);
                   1186:        else
                   1187:                tb_print_op(op, a1, a2);
                   1188: }
                   1189:
                   1190: void
                   1191: tb_print_fromto(struct pf_rule_addr *src, struct pf_rule_addr *dst,
                   1192:                u_int8_t af, u_int8_t proto)
                   1193: {
                   1194:        if (
                   1195:            PF_AZERO(PT_ADDR(src), AF_INET6) &&
                   1196:            PF_AZERO(PT_ADDR(dst), AF_INET6) &&
                   1197:            ! PT_NOROUTE(src) && ! PT_NOROUTE(dst) &&
                   1198:            PF_AZERO(PT_MASK(src), AF_INET6) &&
                   1199:            PF_AZERO(PT_MASK(dst), AF_INET6) &&
                   1200:            !src->port_op && !dst->port_op)
                   1201:                tbprintf("all ");
                   1202:        else {
                   1203:                tbprintf("from ");
                   1204:                if (PT_NOROUTE(src))
                   1205:                        tbprintf("no-route ");
                   1206:                else if (PF_AZERO(PT_ADDR(src), AF_INET6) &&
                   1207:                         PF_AZERO(PT_MASK(src), AF_INET6))
                   1208:                        tbprintf("any ");
                   1209:                else {
                   1210:                        if (src->neg)
                   1211:                                tbprintf("! ");
                   1212:                        tb_print_addrw(&src->addr, PT_MASK(src), af);
                   1213:                        tbprintf(" ");
                   1214:                }
                   1215:                if (src->port_op)
                   1216:                        tb_print_port(src->port_op, src->port[0],
                   1217:                                      src->port[1],
                   1218:                                      proto == IPPROTO_TCP ? "tcp" : "udp");
                   1219:
                   1220:                tbprintf("to ");
                   1221:                if (PT_NOROUTE(dst))
                   1222:                        tbprintf("no-route ");
                   1223:                else if (PF_AZERO(PT_ADDR(dst), AF_INET6) &&
                   1224:                         PF_AZERO(PT_MASK(dst), AF_INET6))
                   1225:                        tbprintf("any ");
                   1226:                else {
                   1227:                        if (dst->neg)
                   1228:                                tbprintf("! ");
                   1229:                        tb_print_addrw(&dst->addr, PT_MASK(dst), af);
                   1230:                        tbprintf(" ");
                   1231:                }
                   1232:                if (dst->port_op)
                   1233:                        tb_print_port(dst->port_op, dst->port[0],
                   1234:                                      dst->port[1],
                   1235:                                      proto == IPPROTO_TCP ? "tcp" : "udp");
                   1236:        }
                   1237: }
                   1238:
                   1239: void
                   1240: tb_print_ugid(u_int8_t op, unsigned u1, unsigned u2,
                   1241:              const char *t, unsigned umax)
                   1242: {
                   1243:        char    a1[11], a2[11];
                   1244:
                   1245:        snprintf(a1, sizeof(a1), "%u", u1);
                   1246:        snprintf(a2, sizeof(a2), "%u", u2);
                   1247:
                   1248:        tbprintf("%s ", t);
                   1249:        if (u1 == umax && (op == PF_OP_EQ || op == PF_OP_NE))
                   1250:                tb_print_op(op, "unknown", a2);
                   1251:        else
                   1252:                tb_print_op(op, a1, a2);
                   1253: }
                   1254:
                   1255: void
                   1256: tb_print_flags(u_int8_t f)
                   1257: {
                   1258:        const char *tcpflags = "FSRPAUEW";
                   1259:        int i;
                   1260:
                   1261:        for (i = 0; tcpflags[i]; ++i)
                   1262:                if (f & (1 << i))
                   1263:                        tbprintf("%c", tcpflags[i]);
                   1264: }
                   1265:
                   1266: void
                   1267: print_rule(struct pf_rule *pr)
                   1268: {
                   1269:        static const char *actiontypes[] = { "Pass", "Block", "Scrub", "Nat",
                   1270:            "no Nat", "Binat", "no Binat", "Rdr", "no Rdr" };
                   1271:        int numact = sizeof(actiontypes) / sizeof(char *);
                   1272:
                   1273:        static const char *routetypes[] = { "", "fastroute", "route-to",
                   1274:            "dup-to", "reply-to" };
                   1275:
                   1276:        int numroute = sizeof(routetypes) / sizeof(char *);
                   1277:
                   1278:        if (pr == NULL) return;
                   1279:
                   1280:        print_fld_str(FLD_LABEL, pr->label);
                   1281:        print_fld_size(FLD_STATS, pr->states_tot);
                   1282:
                   1283:        print_fld_size(FLD_PKTS, pr->packets[0] + pr->packets[1]);
                   1284:        print_fld_size(FLD_BYTES, pr->bytes[0] + pr->bytes[1]);
1.4       canacar  1285:
1.1       canacar  1286:        print_fld_uint(FLD_RULE, pr->nr);
1.5       sthen    1287:        if (pr->direction == PF_OUT)
                   1288:                print_fld_str(FLD_DIR, "Out");
                   1289:        else if (pr->direction == PF_IN)
                   1290:                print_fld_str(FLD_DIR, "In");
                   1291:        else
                   1292:                print_fld_str(FLD_DIR, "Any");
                   1293:
1.1       canacar  1294:        if (pr->quick)
                   1295:                print_fld_str(FLD_QUICK, "Quick");
                   1296:
                   1297:        if (pr->keep_state == PF_STATE_NORMAL)
                   1298:                print_fld_str(FLD_KST, "Keep");
                   1299:        else if (pr->keep_state == PF_STATE_MODULATE)
                   1300:                print_fld_str(FLD_KST, "Mod");
                   1301: #ifdef PF_STATE_SYNPROXY
                   1302:        else if (pr->keep_state == PF_STATE_MODULATE)
                   1303:                print_fld_str(FLD_KST, "Syn");
                   1304: #endif
                   1305:        if (pr->log == 1)
                   1306:                print_fld_str(FLD_LOG, "Log");
                   1307:        else if (pr->log == 2)
                   1308:                print_fld_str(FLD_LOG, "All");
                   1309:
                   1310:        if (pr->action >= numact)
                   1311:                print_fld_uint(FLD_ACTION, pr->action);
                   1312:        else print_fld_str(FLD_ACTION, actiontypes[pr->action]);
                   1313:
                   1314:        if (pr->proto) {
                   1315:                struct protoent *p = getprotobynumber(pr->proto);
                   1316:
                   1317:                if (p != NULL)
                   1318:                        print_fld_str(FLD_PROTO, p->p_name);
                   1319:                else
                   1320:                        print_fld_uint(FLD_PROTO, pr->proto);
                   1321:        }
                   1322:
                   1323:        if (pr->ifname[0]) {
                   1324:                tb_start();
                   1325:                if (pr->ifnot)
                   1326:                        tbprintf("!");
                   1327:                tbprintf("%s", pr->ifname);
                   1328:                print_fld_tb(FLD_IF);
                   1329:        }
                   1330:        if (pr->max_states)
                   1331:                print_fld_uint(FLD_STMAX, pr->max_states);
1.4       canacar  1332:
1.1       canacar  1333:        /* print info field */
                   1334:
                   1335:        tb_start();
                   1336:
                   1337:        if (pr->natpass)
                   1338:                tbprintf("pass ");
1.4       canacar  1339:
1.1       canacar  1340:        if (pr->action == PF_DROP) {
                   1341:                if (pr->rule_flag & PFRULE_RETURNRST)
                   1342:                        tbprintf("return-rst ");
                   1343: #ifdef PFRULE_RETURN
                   1344:                else if (pr->rule_flag & PFRULE_RETURN)
                   1345:                        tbprintf("return ");
                   1346: #endif
                   1347: #ifdef PFRULE_RETURNICMP
                   1348:                else if (pr->rule_flag & PFRULE_RETURNICMP)
                   1349:                        tbprintf("return-icmp ");
                   1350: #endif
                   1351:                else
                   1352:                        tbprintf("drop ");
                   1353:        }
                   1354:
                   1355:        if (pr->rt > 0 && pr->rt < numroute) {
                   1356:                tbprintf("%s ", routetypes[pr->rt]);
                   1357:                if (pr->rt != PF_FASTROUTE)
                   1358:                        tbprintf("... ");
                   1359:        }
1.4       canacar  1360:
1.1       canacar  1361:        if (pr->af) {
                   1362:                if (pr->af == AF_INET)
                   1363:                        tbprintf("inet ");
                   1364:                else
                   1365:                        tbprintf("inet6 ");
                   1366:        }
                   1367:
                   1368:        tb_print_fromto(&pr->src, &pr->dst, pr->af, pr->proto);
1.4       canacar  1369:
1.1       canacar  1370:        if (pr->uid.op)
                   1371:                tb_print_ugid(pr->uid.op, pr->uid.uid[0], pr->uid.uid[1],
                   1372:                        "user", UID_MAX);
                   1373:        if (pr->gid.op)
                   1374:                tb_print_ugid(pr->gid.op, pr->gid.gid[0], pr->gid.gid[1],
                   1375:                        "group", GID_MAX);
                   1376:
                   1377:        if (pr->flags || pr->flagset) {
                   1378:                tbprintf(" flags ");
                   1379:                tb_print_flags(pr->flags);
                   1380:                tbprintf("/");
                   1381:                tb_print_flags(pr->flagset);
                   1382:        }
                   1383:
                   1384:        tbprintf(" ");
                   1385:
                   1386:        if (pr->tos)
                   1387:                tbprintf("tos 0x%2.2x ", pr->tos);
                   1388: #ifdef PFRULE_FRAGMENT
                   1389:        if (pr->rule_flag & PFRULE_FRAGMENT)
                   1390:                tbprintf("fragment ");
                   1391: #endif
                   1392: #ifdef PFRULE_NODF
                   1393:        if (pr->rule_flag & PFRULE_NODF)
                   1394:                tbprintf("no-df ");
                   1395: #endif
                   1396: #ifdef PFRULE_RANDOMID
                   1397:        if (pr->rule_flag & PFRULE_RANDOMID)
                   1398:                tbprintf("random-id ");
                   1399: #endif
                   1400:        if (pr->min_ttl)
                   1401:                tbprintf("min-ttl %d ", pr->min_ttl);
                   1402:        if (pr->max_mss)
                   1403:                tbprintf("max-mss %d ", pr->max_mss);
                   1404:        if (pr->allow_opts)
                   1405:                tbprintf("allow-opts ");
                   1406:
                   1407:        if (pr->action == PF_SCRUB) {
                   1408: #ifdef PFRULE_REASSEMBLE_TCP
                   1409:                if (pr->rule_flag & PFRULE_REASSEMBLE_TCP)
                   1410:                        tbprintf("reassemble tcp ");
                   1411: #endif
                   1412: #ifdef PFRULE_FRAGDROP
                   1413:                if (pr->rule_flag & PFRULE_FRAGDROP)
                   1414:                        tbprintf("fragment drop-ovl ");
                   1415:                else
                   1416: #endif
                   1417: #ifdef PFRULE_FRAGCROP
                   1418:                if (pr->rule_flag & PFRULE_FRAGCROP)
                   1419:                        tbprintf("fragment crop ");
                   1420:                else
                   1421: #endif
                   1422:                        tbprintf("fragment reassemble ");
                   1423:        }
                   1424:
                   1425:        if (pr->qname[0] && pr->pqname[0])
                   1426:                tbprintf("queue(%s, %s) ", pr->qname, pr->pqname);
                   1427:        else if (pr->qname[0])
                   1428:                tbprintf("queue %s ", pr->qname);
1.4       canacar  1429:
1.1       canacar  1430:        if (pr->tagname[0])
                   1431:                tbprintf("tag %s ", pr->tagname);
                   1432:        if (pr->match_tagname[0]) {
                   1433:                if (pr->match_tag_not)
                   1434:                        tbprintf("! ");
                   1435:                tbprintf("tagged %s ", pr->match_tagname);
                   1436:        }
1.4       canacar  1437:
1.1       canacar  1438:        print_fld_tb(FLD_RINFO);
                   1439:
                   1440:        /* XXX anchor field overloaded with anchor name */
                   1441:        print_fld_str(FLD_ANCHOR, (char *)pr->anchor);
                   1442:        tb_end();
                   1443:
                   1444:        end_line();
                   1445: }
                   1446:
                   1447: void
                   1448: print_rules(void)
                   1449: {
                   1450:        u_int32_t n, count = 0;
                   1451:
                   1452:        for (n = dispstart; n < num_rules; n++) {
                   1453:                print_rule(rules + n);
                   1454:                count ++;
                   1455:                if (maxprint > 0 && count >= maxprint)
                   1456:                        break;
                   1457:        }
                   1458: }
                   1459:
                   1460: /* queue display */
                   1461:
                   1462: struct pf_altq_node *
                   1463: pfctl_find_altq_node(struct pf_altq_node *root, const char *qname,
                   1464:     const char *ifname)
                   1465: {
                   1466:        struct pf_altq_node     *node, *child;
                   1467:
                   1468:        for (node = root; node != NULL; node = node->next) {
                   1469:                if (!strcmp(node->altq.qname, qname)
                   1470:                    && !(strcmp(node->altq.ifname, ifname)))
                   1471:                        return (node);
                   1472:                if (node->children != NULL) {
                   1473:                        child = pfctl_find_altq_node(node->children, qname,
                   1474:                            ifname);
                   1475:                        if (child != NULL)
                   1476:                                return (child);
                   1477:                }
                   1478:        }
                   1479:        return (NULL);
                   1480: }
                   1481:
                   1482: void
                   1483: pfctl_insert_altq_node(struct pf_altq_node **root,
                   1484:     const struct pf_altq altq, const struct queue_stats qstats)
                   1485: {
                   1486:        struct pf_altq_node     *node;
                   1487:
                   1488:        node = calloc(1, sizeof(struct pf_altq_node));
                   1489:        if (node == NULL)
                   1490:                err(1, "pfctl_insert_altq_node: calloc");
                   1491:        memcpy(&node->altq, &altq, sizeof(struct pf_altq));
                   1492:        memcpy(&node->qstats, &qstats, sizeof(qstats));
                   1493:        node->next = node->children = node->next_flat = NULL;
                   1494:        node->depth = 0;
                   1495:        node->visited = 1;
                   1496:
                   1497:        if (*root == NULL)
                   1498:                *root = node;
                   1499:        else if (!altq.parent[0]) {
                   1500:                struct pf_altq_node     *prev = *root;
                   1501:
                   1502:                while (prev->next != NULL)
                   1503:                        prev = prev->next;
                   1504:                prev->next = node;
                   1505:        } else {
                   1506:                struct pf_altq_node     *parent;
                   1507:
                   1508:                parent = pfctl_find_altq_node(*root, altq.parent, altq.ifname);
                   1509:                if (parent == NULL)
                   1510:                        errx(1, "parent %s not found", altq.parent);
                   1511:                node->depth = parent->depth+1;
                   1512:                if (parent->children == NULL)
                   1513:                        parent->children = node;
                   1514:                else {
                   1515:                        struct pf_altq_node *prev = parent->children;
                   1516:
                   1517:                        while (prev->next != NULL)
                   1518:                                prev = prev->next;
                   1519:                        prev->next = node;
                   1520:                }
                   1521:        }
1.6       canacar  1522: }
                   1523:
                   1524: void
                   1525: pfctl_set_next_flat(struct pf_altq_node *node, struct pf_altq_node *up)
                   1526: {
                   1527:        while (node) {
                   1528:                struct pf_altq_node *next = node->next ? node->next : up;
                   1529:                if (node->children) {
                   1530:                        node->next_flat = node->children;
                   1531:                        pfctl_set_next_flat(node->children, next);
                   1532:                } else
                   1533:                        node->next_flat = next;
                   1534:                node = node->next;
1.1       canacar  1535:        }
                   1536: }
                   1537:
                   1538: int
                   1539: pfctl_update_qstats(struct pf_altq_node **root, int *inserts)
                   1540: {
                   1541:        struct pf_altq_node     *node;
                   1542:        struct pfioc_altq        pa;
                   1543:        struct pfioc_qstats      pq;
                   1544:        u_int32_t                nr;
                   1545:        struct queue_stats       qstats;
                   1546:        u_int32_t                nr_queues;
1.6       canacar  1547:        int                      ret = 0;
1.1       canacar  1548:
                   1549:        *inserts = 0;
                   1550:        memset(&pa, 0, sizeof(pa));
                   1551:        memset(&pq, 0, sizeof(pq));
                   1552:        memset(&qstats, 0, sizeof(qstats));
                   1553:
                   1554:        if (pf_dev < 0)
                   1555:                return (-1);
                   1556:
                   1557:        if (ioctl(pf_dev, DIOCGETALTQS, &pa)) {
                   1558:                error("DIOCGETALTQS: %s", strerror(errno));
                   1559:                return (-1);
                   1560:        }
1.6       canacar  1561:
1.1       canacar  1562:        num_queues = nr_queues = pa.nr;
                   1563:        for (nr = 0; nr < nr_queues; ++nr) {
                   1564:                pa.nr = nr;
                   1565:                if (ioctl(pf_dev, DIOCGETALTQ, &pa)) {
                   1566:                        error("DIOCGETALTQ: %s", strerror(errno));
1.6       canacar  1567:                        ret = -1;
                   1568:                        break;
1.1       canacar  1569:                }
                   1570:                if (pa.altq.qid > 0) {
                   1571:                        pq.nr = nr;
                   1572:                        pq.ticket = pa.ticket;
                   1573:                        pq.buf = &qstats;
                   1574:                        pq.nbytes = sizeof(qstats);
                   1575:                        if (ioctl(pf_dev, DIOCGETQSTATS, &pq)) {
                   1576:                                error("DIOCGETQSTATS: %s", strerror(errno));
1.6       canacar  1577:                                ret = -1;
                   1578:                                break;
1.1       canacar  1579:                        }
                   1580:                        qstats.valid = 1;
                   1581:                        gettimeofday(&qstats.timestamp, NULL);
                   1582:                        if ((node = pfctl_find_altq_node(*root, pa.altq.qname,
                   1583:                            pa.altq.ifname)) != NULL) {
1.7     ! canacar  1584:                                /* update altq data too as bandwidth may have changed */
1.1       canacar  1585:                                memcpy(&node->altq, &pa.altq, sizeof(struct pf_altq));
                   1586:                                memcpy(&node->qstats_last, &node->qstats,
                   1587:                                    sizeof(struct queue_stats));
                   1588:                                memcpy(&node->qstats, &qstats,
                   1589:                                    sizeof(qstats));
                   1590:                                node->visited = 1;
                   1591:                        } else {
                   1592:                                pfctl_insert_altq_node(root, pa.altq, qstats);
                   1593:                                *inserts = 1;
                   1594:                        }
                   1595:                }
                   1596:                else
                   1597:                        --num_queues;
                   1598:        }
1.6       canacar  1599:
                   1600:        pfctl_set_next_flat(*root, NULL);
                   1601:
                   1602:        return (ret);
1.1       canacar  1603: }
                   1604:
                   1605: void
                   1606: pfctl_free_altq_node(struct pf_altq_node *node)
                   1607: {
                   1608:        while (node != NULL) {
                   1609:                struct pf_altq_node     *prev;
                   1610:
                   1611:                if (node->children != NULL)
                   1612:                        pfctl_free_altq_node(node->children);
                   1613:                prev = node;
                   1614:                node = node->next;
                   1615:                free(prev);
                   1616:        }
                   1617: }
                   1618:
                   1619: void
                   1620: pfctl_mark_all_unvisited(struct pf_altq_node *root)
                   1621: {
                   1622:        if (root != NULL) {
                   1623:                struct pf_altq_node     *node = root;
                   1624:                while (node != NULL) {
                   1625:                        node->visited = 0;
                   1626:                        node = node->next_flat;
                   1627:                }
                   1628:        }
                   1629: }
                   1630:
                   1631: int
                   1632: pfctl_have_unvisited(struct pf_altq_node *root)
                   1633: {
                   1634:        if (root == NULL)
                   1635:                return(0);
                   1636:        else {
                   1637:                struct pf_altq_node     *node = root;
                   1638:                while (node != NULL) {
                   1639:                        if (node->visited == 0)
                   1640:                                return(1);
                   1641:                        node = node->next_flat;
                   1642:                }
                   1643:                return(0);
                   1644:        }
                   1645: }
                   1646:
                   1647: struct pf_altq_node    *altq_root = NULL;
                   1648:
                   1649: int
                   1650: select_queues(void)
                   1651: {
                   1652:        num_disp = num_queues;
                   1653:        return (0);
                   1654: }
                   1655:
                   1656: int
                   1657: read_queues(void)
                   1658: {
                   1659:        static int first_read = 1;
                   1660:        int inserts;
                   1661:        num_disp = num_queues = 0;
                   1662:
                   1663:        pfctl_mark_all_unvisited(altq_root);
                   1664:        if (pfctl_update_qstats(&altq_root, &inserts))
                   1665:                return (-1);
                   1666:
1.7     ! canacar  1667:        /* Allow inserts only on first read;
        !          1668:         * on subsequent reads clear and reload
        !          1669:         */
1.1       canacar  1670:        if (first_read == 0 &&
                   1671:            (inserts != 0 || pfctl_have_unvisited(altq_root) != 0)) {
                   1672:                pfctl_free_altq_node(altq_root);
                   1673:                altq_root = NULL;
                   1674:                first_read = 1;
                   1675:                if (pfctl_update_qstats(&altq_root, &inserts))
                   1676:                        return (-1);
                   1677:        }
                   1678:
                   1679:        first_read = 0;
                   1680:        num_disp = num_queues;
                   1681:
                   1682:        return(0);
                   1683: }
                   1684:
                   1685: double
                   1686: calc_interval(struct timeval *cur_time, struct timeval *last_time)
                   1687: {
                   1688:        double  sec;
                   1689:
                   1690:        sec = (double)(cur_time->tv_sec - last_time->tv_sec) +
                   1691:            (double)(cur_time->tv_usec - last_time->tv_usec) / 1000000;
                   1692:
                   1693:        return (sec);
                   1694: }
                   1695:
                   1696: double
                   1697: calc_rate(u_int64_t new_bytes, u_int64_t last_bytes, double interval)
                   1698: {
                   1699:        double  rate;
                   1700:
                   1701:        rate = (double)(new_bytes - last_bytes) / interval;
                   1702:        return (rate);
                   1703: }
                   1704:
                   1705: double
                   1706: calc_pps(u_int64_t new_pkts, u_int64_t last_pkts, double interval)
                   1707: {
                   1708:        double  pps;
                   1709:
                   1710:        pps = (double)(new_pkts - last_pkts) / interval;
                   1711:        return (pps);
                   1712: }
                   1713:
                   1714: #define DEFAULT_PRIORITY       1
                   1715:
                   1716: void
                   1717: print_queue(struct pf_altq_node *node)
                   1718: {
                   1719:        u_int8_t d;
                   1720:        double  interval, pps, bps;
                   1721:        pps = bps = 0;
                   1722:
                   1723:        tb_start();
                   1724:        for (d = 0; d < node->depth; d++)
                   1725:                tbprintf(" ");
                   1726:        tbprintf(node->altq.qname);
                   1727:        print_fld_tb(FLD_QUEUE);
                   1728:
                   1729:        if (node->altq.scheduler == ALTQT_CBQ ||
                   1730:            node->altq.scheduler == ALTQT_HFSC
                   1731:                )
                   1732:                print_fld_bw(FLD_BANDW, (double)node->altq.bandwidth);
                   1733:
                   1734:        if (node->altq.priority != DEFAULT_PRIORITY)
                   1735:                print_fld_uint(FLD_PRIO,
                   1736:                               node->altq.priority);
                   1737:
                   1738:        if (node->qstats.valid && node->qstats_last.valid)
                   1739:                interval = calc_interval(&node->qstats.timestamp,
                   1740:                                         &node->qstats_last.timestamp);
                   1741:        else
                   1742:                interval = 0;
                   1743:
                   1744:        switch (node->altq.scheduler) {
                   1745:        case ALTQT_CBQ:
                   1746:                print_fld_str(FLD_SCHED, "cbq");
                   1747:                print_fld_size(FLD_PKTS,
                   1748:                               node->qstats.data.cbq_stats.xmit_cnt.packets);
                   1749:                print_fld_size(FLD_BYTES,
                   1750:                               node->qstats.data.cbq_stats.xmit_cnt.bytes);
                   1751:                print_fld_size(FLD_DROPP,
                   1752:                               node->qstats.data.cbq_stats.drop_cnt.packets);
                   1753:                print_fld_size(FLD_DROPB,
                   1754:                               node->qstats.data.cbq_stats.drop_cnt.bytes);
                   1755:                print_fld_size(FLD_QLEN, node->qstats.data.cbq_stats.qcnt);
                   1756:                print_fld_size(FLD_BORR, node->qstats.data.cbq_stats.borrows);
                   1757:                print_fld_size(FLD_SUSP, node->qstats.data.cbq_stats.delays);
                   1758:                if (interval > 0) {
                   1759:                        pps = calc_pps(node->qstats.data.cbq_stats.xmit_cnt.packets,
                   1760:                                       node->qstats_last.data.cbq_stats.xmit_cnt.packets, interval);
                   1761:                        bps = calc_rate(node->qstats.data.cbq_stats.xmit_cnt.bytes,
                   1762:                                        node->qstats_last.data.cbq_stats.xmit_cnt.bytes, interval);
                   1763:                }
                   1764:                break;
                   1765:        case ALTQT_PRIQ:
                   1766:                print_fld_str(FLD_SCHED, "priq");
                   1767:                print_fld_size(FLD_PKTS,
                   1768:                               node->qstats.data.priq_stats.xmitcnt.packets);
                   1769:                print_fld_size(FLD_BYTES,
                   1770:                               node->qstats.data.priq_stats.xmitcnt.bytes);
                   1771:                print_fld_size(FLD_DROPP,
                   1772:                               node->qstats.data.priq_stats.dropcnt.packets);
                   1773:                print_fld_size(FLD_DROPB,
                   1774:                               node->qstats.data.priq_stats.dropcnt.bytes);
                   1775:                print_fld_size(FLD_QLEN, node->qstats.data.priq_stats.qlength);
                   1776:                if (interval > 0) {
                   1777:                        pps = calc_pps(node->qstats.data.priq_stats.xmitcnt.packets,
                   1778:                                       node->qstats_last.data.priq_stats.xmitcnt.packets, interval);
                   1779:                        bps = calc_rate(node->qstats.data.priq_stats.xmitcnt.bytes,
                   1780:                                        node->qstats_last.data.priq_stats.xmitcnt.bytes, interval);
                   1781:                }
                   1782:                break;
                   1783:        case ALTQT_HFSC:
                   1784:                print_fld_str(FLD_SCHED, "hfsc");
                   1785:                print_fld_size(FLD_PKTS,
                   1786:                                node->qstats.data.hfsc_stats.xmit_cnt.packets);
                   1787:                print_fld_size(FLD_BYTES,
                   1788:                                node->qstats.data.hfsc_stats.xmit_cnt.bytes);
                   1789:                print_fld_size(FLD_DROPP,
                   1790:                                node->qstats.data.hfsc_stats.drop_cnt.packets);
                   1791:                print_fld_size(FLD_DROPB,
                   1792:                                node->qstats.data.hfsc_stats.drop_cnt.bytes);
                   1793:                print_fld_size(FLD_QLEN, node->qstats.data.hfsc_stats.qlength);
                   1794:                if (interval > 0) {
                   1795:                        pps = calc_pps(node->qstats.data.hfsc_stats.xmit_cnt.packets,
                   1796:                                        node->qstats_last.data.hfsc_stats.xmit_cnt.packets, interval);
                   1797:                        bps = calc_rate(node->qstats.data.hfsc_stats.xmit_cnt.bytes,
                   1798:                                        node->qstats_last.data.hfsc_stats.xmit_cnt.bytes, interval);
                   1799:                }
                   1800:                break;
                   1801:        }
                   1802:
                   1803:        /* if (node->altq.scheduler != ALTQT_HFSC && interval > 0) { */
                   1804:        if (node->altq.scheduler && interval > 0) {
                   1805:                tb_start();
                   1806:                if (pps > 0 && pps < 1)
                   1807:                        tbprintf("%-3.1lf", pps);
                   1808:                else
                   1809:                        tbprintf("%u", (unsigned int) pps);
                   1810:
                   1811:                print_fld_tb(FLD_PKTSPS);
                   1812:                print_fld_bw(FLD_BYTESPS, bps);
                   1813:        }
                   1814: }
                   1815:
                   1816: void
                   1817: print_queues(void)
                   1818: {
                   1819:        u_int32_t n, count = 0;
                   1820:        struct pf_altq_node *node = altq_root;
                   1821:
                   1822:        for (n = 0; n < dispstart; n++)
                   1823:                node = node->next_flat;
                   1824:
                   1825:        for (; n < num_disp; n++) {
                   1826:                print_queue(node);
                   1827:                node = node->next_flat;
                   1828:                end_line();
                   1829:                count ++;
                   1830:                if (maxprint > 0 && count >= maxprint)
                   1831:                        break;
                   1832:        }
                   1833: }
                   1834:
                   1835: /* main program functions */
                   1836:
                   1837: void
1.7     ! canacar  1838: update_cache(void)
1.1       canacar  1839: {
                   1840:        static int pstate = -1;
                   1841:        if (pstate == cachestates)
                   1842:                return;
                   1843:
                   1844:        pstate = cachestates;
                   1845:        if (cachestates) {
                   1846:                show_field(FLD_SI);
                   1847:                show_field(FLD_SP);
                   1848:                gotsig_alarm = 1;
                   1849:        } else {
                   1850:                hide_field(FLD_SI);
                   1851:                hide_field(FLD_SP);
                   1852:                need_update = 1;
                   1853:        }
                   1854:        field_setup();
                   1855: }
                   1856:
1.7     ! canacar  1857: int
1.1       canacar  1858: initpftop(void)
                   1859: {
                   1860:        struct pf_status status;
                   1861:        field_view *v;
                   1862:        int cachesize = DEFAULT_CACHE_SIZE;
                   1863:
                   1864:        v = views;
                   1865:        while(v->name != NULL)
                   1866:                add_view(v++);
                   1867:
                   1868:        pf_dev = open("/dev/pf", O_RDONLY);
                   1869:        if (pf_dev == -1) {
                   1870:                alloc_buf(0);
                   1871:        } else if (ioctl(pf_dev, DIOCGETSTATUS, &status)) {
                   1872:                warn("DIOCGETSTATUS");
                   1873:                alloc_buf(0);
                   1874:        } else
                   1875:                alloc_buf(status.states);
                   1876:
                   1877:        /* initialize cache with given size */
                   1878:        if (cache_init(cachesize))
                   1879:                warnx("Failed to initialize cache.");
                   1880:        else if (interactive && cachesize > 0)
                   1881:                cachestates = 1;
                   1882:
                   1883:        update_cache();
                   1884:
                   1885:        show_field(FLD_STMAX);
                   1886:        show_field(FLD_ANCHOR);
1.7     ! canacar  1887:
        !          1888:        return (1);
1.1       canacar  1889: }