[BACK]Return to sensors.c CVS log [TXT][DIR] Up to [local] / src / usr.bin / systat

Annotation of src/usr.bin/systat/sensors.c, Revision 1.16

1.16    ! okan        1: /*     $OpenBSD: sensors.c,v 1.15 2009/06/25 20:39:02 okan Exp $       */
1.8       deanna      2:
1.1       deanna      3: /*
                      4:  * Copyright (c) 2007 Deanna Phillips <deanna@openbsd.org>
                      5:  * Copyright (c) 2003 Henning Brauer <henning@openbsd.org>
1.4       deraadt     6:  * Copyright (c) 2006 Constantine A. Murenin <cnst+openbsd@bugmail.mojo.ru>
1.1       deanna      7:  *
                      8:  * Permission to use, copy, modify, and distribute this software for any
                      9:  * purpose with or without fee is hereby granted, provided that the above
                     10:  * copyright notice and this permission notice appear in all copies.
                     11:  *
                     12:  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
                     13:  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
                     14:  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
                     15:  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
                     16:  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
                     17:  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
                     18:  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
                     19:  *
                     20:  */
                     21:
                     22: #include <sys/param.h>
                     23: #include <sys/sysctl.h>
                     24: #include <sys/sensors.h>
                     25:
                     26: #include <err.h>
                     27: #include <errno.h>
                     28: #include <stdio.h>
                     29: #include <stdlib.h>
1.13      canacar    30: #include <string.h>
1.1       deanna     31: #include "systat.h"
                     32:
                     33: struct sensor sensor;
                     34: struct sensordev sensordev;
                     35:
1.13      canacar    36: struct sensinfo {
                     37:        int sn_dev;
                     38:        struct sensor sn_sensor;
                     39: };
                     40: #define sn_type sn_sensor.type
                     41: #define sn_numt sn_sensor.numt
                     42: #define sn_desc sn_sensor.desc
                     43: #define sn_status sn_sensor.status
                     44: #define sn_value sn_sensor.value
                     45:
                     46: char *devnames[MAXSENSORDEVICES];
                     47:
                     48: #define ADD_ALLOC 100
                     49: static size_t sensor_cnt = 0;
                     50: static size_t num_alloc = 0;
                     51: static struct sensinfo *sensors = NULL;
                     52:
                     53: static char *fmttime(double);
                     54: static void showsensor(struct sensinfo *s);
                     55:
                     56: void print_sn(void);
                     57: int read_sn(void);
                     58: int select_sn(void);
                     59:
                     60: const char *drvstat[] = {
                     61:        NULL,
1.16    ! okan       62:        "empty", "ready", "powering up", "online", "idle", "active",
        !            63:        "rebuilding", "powering down", "failed", "degraded"
1.13      canacar    64: };
                     65:
                     66:
                     67: field_def fields_sn[] = {
                     68:        {"SENSOR", 16, 32, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
                     69:        {"VALUE", 16, 20, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
                     70:        {"STATUS", 5, 8, 1, FLD_ALIGN_CENTER, -1, 0, 0, 0},
                     71:        {"DESCRIPTION", 20, 45, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0}
                     72: };
                     73:
                     74: #define FIELD_ADDR(x) (&fields_sn[x])
                     75:
                     76: #define FLD_SN_SENSOR  FIELD_ADDR(0)
                     77: #define FLD_SN_VALUE   FIELD_ADDR(1)
                     78: #define FLD_SN_STATUS  FIELD_ADDR(2)
                     79: #define FLD_SN_DESCR   FIELD_ADDR(3)
                     80:
                     81: /* Define views */
                     82: field_def *view_sn_0[] = {
                     83:        FLD_SN_SENSOR, FLD_SN_VALUE, FLD_SN_STATUS, FLD_SN_DESCR, NULL
                     84: };
                     85:
                     86:
                     87: /* Define view managers */
                     88: struct view_manager sensors_mgr = {
                     89:        "Sensors", select_sn, read_sn, NULL, print_header,
                     90:        print_sn, keyboard_callback, NULL, NULL
                     91: };
                     92:
                     93: field_view views_sn[] = {
                     94:        {view_sn_0, "sensors", '3', &sensors_mgr},
                     95:        {NULL, NULL, 0, NULL}
                     96: };
                     97:
                     98: struct sensinfo *
                     99: next_sn(void)
1.1       deanna    100: {
1.13      canacar   101:        if (num_alloc <= sensor_cnt) {
                    102:                struct sensinfo *s;
                    103:                size_t a = num_alloc + ADD_ALLOC;
                    104:                if (a < num_alloc)
                    105:                        return NULL;
                    106:                s = realloc(sensors, a * sizeof(struct sensinfo));
                    107:                if (s == NULL)
                    108:                        return NULL;
                    109:                sensors = s;
                    110:                num_alloc = a;
                    111:        }
                    112:
                    113:        return &sensors[sensor_cnt++];
1.1       deanna    114: }
                    115:
                    116:
1.13      canacar   117: int
                    118: select_sn(void)
1.1       deanna    119: {
1.13      canacar   120:        num_disp = sensor_cnt;
                    121:        return (0);
1.1       deanna    122: }
                    123:
1.13      canacar   124: int
                    125: read_sn(void)
1.1       deanna    126: {
                    127:        enum sensor_type type;
                    128:        size_t           slen, sdlen;
                    129:        int              mib[5], dev, numt;
1.13      canacar   130:        struct sensinfo *s;
1.1       deanna    131:
                    132:        mib[0] = CTL_HW;
                    133:        mib[1] = HW_SENSORS;
                    134:
                    135:        sensor_cnt = 0;
1.8       deanna    136:
1.1       deanna    137:        for (dev = 0; dev < MAXSENSORDEVICES; dev++) {
                    138:                mib[2] = dev;
1.13      canacar   139:                sdlen = sizeof(struct sensordev);
1.1       deanna    140:                if (sysctl(mib, 3, &sensordev, &sdlen, NULL, 0) == -1) {
                    141:                        if (errno != ENOENT)
1.13      canacar   142:                                error("sysctl: %s", strerror(errno));
1.1       deanna    143:                        continue;
                    144:                }
1.13      canacar   145:
                    146:                if (devnames[dev] && strcmp(devnames[dev], sensordev.xname)) {
                    147:                        free(devnames[dev]);
                    148:                        devnames[dev] = NULL;
                    149:                }
                    150:                if (devnames[dev] == NULL)
                    151:                        devnames[dev] = strdup(sensordev.xname);
                    152:
1.1       deanna    153:                for (type = 0; type < SENSOR_MAX_TYPES; type++) {
                    154:                        mib[3] = type;
                    155:                        for (numt = 0; numt < sensordev.maxnumt[type]; numt++) {
                    156:                                mib[4] = numt;
1.13      canacar   157:                                slen = sizeof(struct sensor);
1.2       deraadt   158:                                if (sysctl(mib, 5, &sensor, &slen, NULL, 0)
1.1       deanna    159:                                    == -1) {
                    160:                                        if (errno != ENOENT)
1.13      canacar   161:                                                error("sysctl: %s", strerror(errno));
1.1       deanna    162:                                        continue;
                    163:                                }
                    164:                                if (sensor.flags & SENSOR_FINVALID)
                    165:                                        continue;
1.13      canacar   166:
                    167:                                s = next_sn();
                    168:                                s->sn_sensor = sensor;
                    169:                                s->sn_dev = dev;
1.1       deanna    170:                        }
                    171:                }
                    172:        }
1.13      canacar   173:
                    174:        num_disp = sensor_cnt;
                    175:        return 0;
1.1       deanna    176: }
                    177:
                    178:
                    179: void
1.13      canacar   180: print_sn(void)
1.1       deanna    181: {
1.13      canacar   182:        int n, count = 0;
                    183:
                    184:        for (n = dispstart; n < num_disp; n++) {
                    185:                showsensor(sensors + n);
                    186:                count++;
                    187:                if (maxprint > 0 && count >= maxprint)
                    188:                        break;
                    189:        }
1.1       deanna    190: }
                    191:
                    192: int
                    193: initsensors(void)
                    194: {
1.13      canacar   195:        field_view *v;
                    196:
                    197:        memset(devnames, 0, sizeof(devnames));
                    198:
                    199:        for (v = views_sn; v->name != NULL; v++)
                    200:                add_view(v);
                    201:
                    202:        return(1);
1.1       deanna    203: }
                    204:
1.13      canacar   205: static void
                    206: showsensor(struct sensinfo *s)
1.1       deanna    207: {
1.13      canacar   208:        tb_start();
                    209:        tbprintf("%s.%s%d", devnames[s->sn_dev],
                    210:                 sensor_type_s[s->sn_type], s->sn_numt);
                    211:        print_fld_tb(FLD_SN_SENSOR);
                    212:
                    213:        if (s->sn_desc[0] != '\0')
                    214:                print_fld_str(FLD_SN_DESCR, s->sn_desc);
                    215:
                    216:        tb_start();
                    217:
                    218:        switch (s->sn_type) {
1.1       deanna    219:        case SENSOR_TEMP:
1.13      canacar   220:                tbprintf("%10.2f degC",
                    221:                    (s->sn_value - 273150000) / 1000000.0);
1.1       deanna    222:                break;
                    223:        case SENSOR_FANRPM:
1.13      canacar   224:                tbprintf("%11lld RPM", s->sn_value);
1.1       deanna    225:                break;
                    226:        case SENSOR_VOLTS_DC:
1.13      canacar   227:                tbprintf("%10.2f V DC",
                    228:                    s->sn_value / 1000000.0);
1.1       deanna    229:                break;
                    230:        case SENSOR_AMPS:
1.13      canacar   231:                tbprintf("%10.2f A", s->sn_value / 1000000.0);
1.1       deanna    232:                break;
                    233:        case SENSOR_INDICATOR:
1.13      canacar   234:                tbprintf("%15s", s->sn_value ? "On" : "Off");
1.1       deanna    235:                break;
                    236:        case SENSOR_INTEGER:
1.13      canacar   237:                tbprintf("%11lld raw", s->sn_value);
1.1       deanna    238:                break;
                    239:        case SENSOR_PERCENT:
1.13      canacar   240:                tbprintf("%14.2f%%", s->sn_value / 1000.0);
1.1       deanna    241:                break;
                    242:        case SENSOR_LUX:
1.13      canacar   243:                tbprintf("%15.2f lx", s->sn_value / 1000000.0);
1.1       deanna    244:                break;
                    245:        case SENSOR_DRIVE:
1.13      canacar   246:                if (0 < s->sn_value &&
1.15      okan      247:                    s->sn_value < nitems(drvstat)) {
1.13      canacar   248:                        tbprintf("%15s", drvstat[s->sn_value]);
1.1       deanna    249:                        break;
                    250:                }
1.3       deraadt   251:                break;
1.1       deanna    252:        case SENSOR_TIMEDELTA:
1.13      canacar   253:                tbprintf("%15s", fmttime(s->sn_value / 1000000000.0));
1.1       deanna    254:                break;
                    255:        case SENSOR_WATTHOUR:
1.13      canacar   256:                tbprintf("%12.2f Wh", s->sn_value / 1000000.0);
1.1       deanna    257:                break;
                    258:        case SENSOR_AMPHOUR:
1.13      canacar   259:                tbprintf("%10.2f Ah", s->sn_value / 1000000.0);
1.1       deanna    260:                break;
                    261:        default:
1.13      canacar   262:                tbprintf("%10lld", s->sn_value);
1.3       deraadt   263:                break;
1.1       deanna    264:        }
1.2       deraadt   265:
1.13      canacar   266:        print_fld_tb(FLD_SN_VALUE);
                    267:
                    268:        switch (s->sn_status) {
1.8       deanna    269:        case SENSOR_S_UNSPEC:
                    270:                break;
1.1       deanna    271:        case SENSOR_S_UNKNOWN:
1.13      canacar   272:                print_fld_str(FLD_SN_STATUS, "unknown");
1.1       deanna    273:                break;
                    274:        case SENSOR_S_WARN:
1.13      canacar   275:                print_fld_str(FLD_SN_STATUS, "WARNING");
1.1       deanna    276:                break;
                    277:        case SENSOR_S_CRIT:
1.13      canacar   278:                print_fld_str(FLD_SN_STATUS, "CRITICAL");
1.1       deanna    279:                break;
1.3       deraadt   280:        case SENSOR_S_OK:
1.13      canacar   281:                print_fld_str(FLD_SN_STATUS, "OK");
1.1       deanna    282:                break;
                    283:        }
1.13      canacar   284:        end_line();
1.9       ckuethe   285: }
                    286:
                    287: #define SECS_PER_DAY 86400
                    288: #define SECS_PER_HOUR 3600
                    289: #define SECS_PER_MIN 60
                    290:
                    291: static char *
                    292: fmttime(double in)
                    293: {
                    294:        int signbit = 1;
                    295:        int tiny = 0;
                    296:        char *unit;
                    297: #define LEN 32
                    298:        static char outbuf[LEN];
                    299:
                    300:        if (in < 0){
                    301:                signbit = -1;
                    302:                in *= -1;
                    303:        }
                    304:
                    305:        if (in >= SECS_PER_DAY ){
                    306:                unit = "days";
                    307:                in /= SECS_PER_DAY;
                    308:        } else if (in >= SECS_PER_HOUR ){
                    309:                unit = "hr";
                    310:                in /= SECS_PER_HOUR;
                    311:        } else if (in >= SECS_PER_MIN ){
                    312:                unit = "min";
                    313:                in /= SECS_PER_MIN;
                    314:        } else if (in >= 1 ){
1.11      ckuethe   315:                unit = "s";
1.9       ckuethe   316:                /* in *= 1; */ /* no op */
1.10      ckuethe   317:        } else if (in == 0 ){ /* direct comparisons to floats are scary */
1.11      ckuethe   318:                unit = "s";
1.9       ckuethe   319:        } else if (in >= 1e-3 ){
1.11      ckuethe   320:                unit = "ms";
1.9       ckuethe   321:                in *= 1e3;
                    322:        } else if (in >= 1e-6 ){
1.11      ckuethe   323:                unit = "us";
1.9       ckuethe   324:                in *= 1e6;
                    325:        } else if (in >= 1e-9 ){
1.11      ckuethe   326:                unit = "ns";
1.9       ckuethe   327:                in *= 1e9;
                    328:        } else {
1.11      ckuethe   329:                unit = "ps";
1.9       ckuethe   330:                if (in < 1e-13)
                    331:                        tiny = 1;
                    332:                in *= 1e12;
                    333:        }
                    334:
                    335:        snprintf(outbuf, LEN,
1.14      canacar   336:            tiny ? "%s%f %s" : "%s%.3f %s",
1.9       ckuethe   337:            signbit == -1 ? "-" : "", in, unit);
                    338:
                    339:        return outbuf;
1.1       deanna    340: }