[BACK]Return to machine.c CVS log [TXT][DIR] Up to [local] / src / usr.bin / top

File: [local] / src / usr.bin / top / machine.c (download)

Revision 1.110, Wed Aug 26 16:21:28 2020 UTC (3 years, 9 months ago) by kn
Branch: MAIN
CVS Tags: OPENBSD_7_0_BASE, OPENBSD_7_0, OPENBSD_6_9_BASE, OPENBSD_6_9, OPENBSD_6_8_BASE, OPENBSD_6_8
Changes since 1.109: +18 -14 lines

Add "t" to toggle the display of routing tables

Swap the WAIT column with RTABLE (and vice versa);  WAIT is wide enough to
fit RTABLE, somewhat adds additional value to STATE and seems therefore most
appropiate to hide in favour of RTABLE.

Filtering rtables with "T" does not toggle the column, just like filtering
users with "u" does not toggle between user and thread id.

Feedback jmc
OK remi

/* $OpenBSD: machine.c,v 1.110 2020/08/26 16:21:28 kn Exp $	 */

/*-
 * Copyright (c) 1994 Thorsten Lockert <tholo@sigmasoft.com>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. The name of the author may not be used to endorse or promote products
 *    derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL
 * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * AUTHOR:  Thorsten Lockert <tholo@sigmasoft.com>
 *          Adapted from BSD4.4 by Christos Zoulas <christos@ee.cornell.edu>
 *          Patch for process wait display by Jarl F. Greipsland <jarle@idt.unit.no>
 *	    Patch for -DORDER by Kenneth Stailey <kstailey@disclosure.com>
 *	    Patch for new swapctl(2) by Tobias Weingartner <weingart@openbsd.org>
 */

#include <sys/param.h>	/* DEV_BSIZE MAXCOMLEN PZERO */
#include <sys/types.h>
#include <sys/signal.h>
#include <sys/mount.h>
#include <sys/proc.h>
#include <sys/sched.h>
#include <sys/swap.h>
#include <sys/sysctl.h>

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <err.h>
#include <errno.h>

#include "top.h"
#include "display.h"
#include "machine.h"
#include "utils.h"

static int	swapmode(int *, int *);
static char	*state_abbr(struct kinfo_proc *);
static char	*format_comm(struct kinfo_proc *);
static int	cmd_matches(struct kinfo_proc *, char *);
static char	**get_proc_args(struct kinfo_proc *);

/* get_process_info passes back a handle.  This is what it looks like: */

struct handle {
	struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
};

/* what we consider to be process size: */
#define PROCSIZE(pp) ((pp)->p_vm_tsize + (pp)->p_vm_dsize + (pp)->p_vm_ssize)

/*
 *  These definitions control the format of the per-process area
 */
static char header[] =
	"  PID X        PRI NICE  SIZE   RES STATE     WAIT      TIME    CPU COMMAND";

/* offsets in the header line to start alternative columns */
#define UNAME_START 6
#define RTABLE_START 46

#define Proc_format \
	"%5d %-8.8s %3d %4d %5s %5s %-9s %-7.7s %6s %5.2f%% %s"

/* process state names for the "STATE" column of the display */
char	*state_abbrev[] = {
	"", "start", "run", "sleep", "stop", "zomb", "dead", "onproc"
};

/* these are for calculating cpu state percentages */
static struct cpustats	*cp_time;
static struct cpustats	*cp_old;
static struct cpustats	*cp_diff;

/* these are for detailing the process states */
int process_states[8];
char *procstatenames[] = {
	"", " starting, ", " running, ", " idle, ",
	" stopped, ", " zombie, ", " dead, ", " on processor, ",
	NULL
};

/* these are for detailing the cpu states */
int64_t *cpu_states;
char *cpustatenames[] = {
	"user", "nice", "sys", "spin", "intr", "idle", NULL
};

/* this is for tracking which cpus are online */
int *cpu_online;

/* these are for detailing the memory statistics */
int memory_stats[10];
char *memorynames[] = {
	"Real: ", "K/", "K act/tot ", "Free: ", "K ",
	"Cache: ", "K ",
	"Swap: ", "K/", "K",
	NULL
};

/* these are names given to allowed sorting orders -- first is default */
char	*ordernames[] = {
	"cpu", "size", "res", "time", "pri", "pid", "command", NULL
};

/* these are for keeping track of the proc array */
static int	nproc;
static int	onproc = -1;
static int	pref_len;
static struct kinfo_proc *pbase;
static struct kinfo_proc **pref;

/* these are for getting the memory statistics */
static int	pageshift;	/* log base 2 of the pagesize */

/* define pagetok in terms of pageshift */
#define pagetok(size) ((size) << pageshift)

int		ncpu;
int		ncpuonline;
int		fscale;

unsigned int	maxslp;

int
getfscale(void)
{
	int mib[] = { CTL_KERN, KERN_FSCALE };
	size_t size = sizeof(fscale);

	if (sysctl(mib, sizeof(mib) / sizeof(mib[0]),
	    &fscale, &size, NULL, 0) == -1)
		return (-1);
	return fscale;
}

int
getncpu(void)
{
	int mib[] = { CTL_HW, HW_NCPU };
	int numcpu;
	size_t size = sizeof(numcpu);

	if (sysctl(mib, sizeof(mib) / sizeof(mib[0]),
	    &numcpu, &size, NULL, 0) == -1)
		return (-1);

	return (numcpu);
}

int
getncpuonline(void)
{
	int mib[] = { CTL_HW, HW_NCPUONLINE };
	int numcpu;
	size_t size = sizeof(numcpu);

	if (sysctl(mib, sizeof(mib) / sizeof(mib[0]),
	    &numcpu, &size, NULL, 0) == -1)
		return (-1);

	return (numcpu);
}

int
machine_init(struct statics *statics)
{
	int pagesize;

	ncpu = getncpu();
	if (ncpu == -1)
		return (-1);
	if (getfscale() == -1)
		return (-1);
	cpu_states = calloc(ncpu, CPUSTATES * sizeof(int64_t));
	if (cpu_states == NULL)
		err(1, NULL);
	cp_time = calloc(ncpu, sizeof(*cp_time));
	cp_old  = calloc(ncpu, sizeof(*cp_old));
	cp_diff = calloc(ncpu, sizeof(*cp_diff));
	if (cp_time == NULL || cp_old == NULL || cp_diff == NULL)
		err(1, NULL);
	cpu_online = calloc(ncpu, sizeof(*cpu_online));
	if (cpu_online == NULL)
		err(1, NULL);

	/*
	 * get the page size with "getpagesize" and calculate pageshift from
	 * it
	 */
	pagesize = getpagesize();
	pageshift = 0;
	while (pagesize > 1) {
		pageshift++;
		pagesize >>= 1;
	}

	/* we only need the amount of log(2)1024 for our conversion */
	pageshift -= LOG1024;

	/* fill in the statics information */
	statics->procstate_names = procstatenames;
	statics->cpustate_names = cpustatenames;
	statics->memory_names = memorynames;
	statics->order_names = ordernames;
	return (0);
}

char *
format_header(char *second_field, char *eighth_field)
{
	char *second_fieldp = second_field, *eighth_fieldp = eighth_field, *ptr;

	ptr = header + UNAME_START;
	while (*second_fieldp != '\0')
		*ptr++ = *second_fieldp++;
	ptr = header + RTABLE_START;
	while (*eighth_fieldp != '\0')
		*ptr++ = *eighth_fieldp++;
	return (header);
}

void
get_system_info(struct system_info *si)
{
	static int cpustats_mib[] = {CTL_KERN, KERN_CPUSTATS, /*fillme*/0};
	static int sysload_mib[] = {CTL_VM, VM_LOADAVG};
	static int uvmexp_mib[] = {CTL_VM, VM_UVMEXP};
	static int bcstats_mib[] = {CTL_VFS, VFS_GENERIC, VFS_BCACHESTAT};
	struct loadavg sysload;
	struct uvmexp uvmexp;
	struct bcachestats bcstats;
	double *infoloadp;
	size_t size;
	int i;
	int64_t *tmpstate;

	size = sizeof(*cp_time);
	for (i = 0; i < ncpu; i++) {
		cpustats_mib[2] = i;
		tmpstate = cpu_states + (CPUSTATES * i);
		if (sysctl(cpustats_mib, 3, &cp_time[i], &size, NULL, 0) == -1)
			warn("sysctl kern.cpustats failed");
		/* convert cpustats counts to percentages */
		(void) percentages(CPUSTATES, tmpstate, cp_time[i].cs_time,
		    cp_old[i].cs_time, cp_diff[i].cs_time);
		/* note whether the cpu is online */
		cpu_online[i] = (cp_time[i].cs_flags & CPUSTATS_ONLINE) != 0;
	}

	size = sizeof(sysload);
	if (sysctl(sysload_mib, 2, &sysload, &size, NULL, 0) == -1)
		warn("sysctl failed");
	infoloadp = si->load_avg;
	for (i = 0; i < 3; i++)
		*infoloadp++ = ((double) sysload.ldavg[i]) / sysload.fscale;


	/* get total -- systemwide main memory usage structure */
	size = sizeof(uvmexp);
	if (sysctl(uvmexp_mib, 2, &uvmexp, &size, NULL, 0) == -1) {
		warn("sysctl failed");
		bzero(&uvmexp, sizeof(uvmexp));
	}
	size = sizeof(bcstats);
	if (sysctl(bcstats_mib, 3, &bcstats, &size, NULL, 0) == -1) {
		warn("sysctl failed");
		bzero(&bcstats, sizeof(bcstats));
	}
	/* convert memory stats to Kbytes */
	memory_stats[0] = -1;
	memory_stats[1] = pagetok(uvmexp.active);
	memory_stats[2] = pagetok(uvmexp.npages - uvmexp.free);
	memory_stats[3] = -1;
	memory_stats[4] = pagetok(uvmexp.free);
	memory_stats[5] = -1;
	memory_stats[6] = pagetok(bcstats.numbufpages);
	memory_stats[7] = -1;

	if (!swapmode(&memory_stats[8], &memory_stats[9])) {
		memory_stats[8] = 0;
		memory_stats[9] = 0;
	}

	/* set arrays and strings */
	si->cpustates = cpu_states;
	si->cpuonline = cpu_online;
	si->memory = memory_stats;
	si->last_pid = -1;
}

static struct handle handle;

struct kinfo_proc *
getprocs(int op, int arg, int *cnt)
{
	size_t size;
	int mib[6] = {CTL_KERN, KERN_PROC, KERN_PROC_ALL, 0,
	    sizeof(struct kinfo_proc), 0};
	static int maxslp_mib[] = {CTL_VM, VM_MAXSLP};
	static struct kinfo_proc *procbase;
	int st;

	mib[2] = op;
	mib[3] = arg;

	size = sizeof(maxslp);
	if (sysctl(maxslp_mib, 2, &maxslp, &size, NULL, 0) == -1) {
		warn("sysctl vm.maxslp failed");
		return (0);
	}
    retry:
	free(procbase);
	st = sysctl(mib, 6, NULL, &size, NULL, 0);
	if (st == -1) {
		/* _kvm_syserr(kd, kd->program, "kvm_getprocs"); */
		return (0);
	}
	size = 5 * size / 4;			/* extra slop */
	if ((procbase = malloc(size)) == NULL)
		return (0);
	mib[5] = (int)(size / sizeof(struct kinfo_proc));
	st = sysctl(mib, 6, procbase, &size, NULL, 0);
	if (st == -1) {
		if (errno == ENOMEM)
			goto retry;
		/* _kvm_syserr(kd, kd->program, "kvm_getprocs"); */
		return (0);
	}
	*cnt = (int)(size / sizeof(struct kinfo_proc));
	return (procbase);
}

static char **
get_proc_args(struct kinfo_proc *kp)
{
	static char	**s;
	static size_t	siz = 1023;
	int		mib[4];

	if (!s && !(s = malloc(siz)))
		err(1, NULL);

	mib[0] = CTL_KERN;
	mib[1] = KERN_PROC_ARGS;
	mib[2] = kp->p_pid;
	mib[3] = KERN_PROC_ARGV;
	for (;;) {
		size_t space = siz;
		if (sysctl(mib, 4, s, &space, NULL, 0) == 0)
			break;
		if (errno != ENOMEM)
			return NULL;
		siz *= 2;
		if ((s = realloc(s, siz)) == NULL)
			err(1, NULL);
	}
	return s;
}

static int
cmd_matches(struct kinfo_proc *proc, char *term)
{
	extern int	show_args;
	char		**args = NULL;

	if (!term) {
		/* No command filter set */
		return 1;
	} else {
		/* Filter set, process name needs to contain term */
		if (strstr(proc->p_comm, term))
			return 1;
		/* If showing arguments, search those as well */
		if (show_args) {
			args = get_proc_args(proc);

			if (args == NULL) {
				/* Failed to get args, so can't search them */
				return 0;
			}

			while (*args != NULL) {
				if (strstr(*args, term))
					return 1;
				args++;
			}
		}
	}
	return 0;
}

struct handle *
get_process_info(struct system_info *si, struct process_select *sel,
    int (*compare) (const void *, const void *))
{
	int show_idle, show_system, show_threads, show_uid, show_pid, show_cmd;
	int show_rtableid, hide_rtableid, hide_uid;
	int total_procs, active_procs;
	struct kinfo_proc **prefp, *pp;
	int what = KERN_PROC_ALL;

	show_system = sel->system;
	show_threads = sel->threads;

	if (show_system)
		what = KERN_PROC_KTHREAD;
	if (show_threads)
		what |= KERN_PROC_SHOW_THREADS;

	if ((pbase = getprocs(what, 0, &nproc)) == NULL) {
		/* warnx("%s", kvm_geterr(kd)); */
		quit(23);
	}
	if (nproc > onproc)
		pref = reallocarray(pref, (onproc = nproc),
		    sizeof(struct kinfo_proc *));
	if (pref == NULL) {
		warnx("Out of memory.");
		quit(23);
	}
	/* get a pointer to the states summary array */
	si->procstates = process_states;

	/* set up flags which define what we are going to select */
	show_idle = sel->idle;
	show_uid = sel->uid != (uid_t)-1;
	hide_uid = sel->huid != (uid_t)-1;
	show_pid = sel->pid != (pid_t)-1;
	show_rtableid = sel->rtableid != -1;
	hide_rtableid = sel->hrtableid != -1;
	show_cmd = sel->command != NULL;

	/* count up process states and get pointers to interesting procs */
	total_procs = 0;
	active_procs = 0;
	memset((char *) process_states, 0, sizeof(process_states));
	prefp = pref;
	for (pp = pbase; pp < &pbase[nproc]; pp++) {
		/*
		 * When showing threads, we want to ignore the structure
		 * that represents the entire process, which has TID == -1
		 */
		if (show_threads && pp->p_tid == -1)
			continue;
		/*
		 * Place pointers to each valid proc structure in pref[].
		 * Process slots that are actually in use have a non-zero
		 * status field.
		 */
		if (pp->p_stat != 0) {
			total_procs++;
			process_states[(unsigned char) pp->p_stat]++;
			if ((pp->p_psflags & PS_ZOMBIE) == 0 &&
			    (show_idle || pp->p_pctcpu != 0 ||
			    pp->p_stat == SRUN) &&
			    (!hide_uid || pp->p_ruid != sel->huid) &&
			    (!show_uid || pp->p_ruid == sel->uid) &&
			    (!show_pid || pp->p_pid == sel->pid) &&
			    (!hide_rtableid || pp->p_rtableid != sel->hrtableid) &&
			    (!show_rtableid || pp->p_rtableid == sel->rtableid) &&
			    (!show_cmd || cmd_matches(pp, sel->command))) {
				*prefp++ = pp;
				active_procs++;
			}
		}
	}

	qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *), compare);
	/* remember active and total counts */
	si->p_total = total_procs;
	si->p_active = pref_len = active_procs;

	/* pass back a handle */
	handle.next_proc = pref;
	return &handle;
}

char fmt[MAX_COLS];	/* static area where result is built */

static char *
state_abbr(struct kinfo_proc *pp)
{
	static char buf[10];

	if (ncpu > 1 && pp->p_cpuid != KI_NOCPU)
		snprintf(buf, sizeof buf, "%s/%llu",
		    state_abbrev[(unsigned char)pp->p_stat], pp->p_cpuid);
	else
		snprintf(buf, sizeof buf, "%s",
		    state_abbrev[(unsigned char)pp->p_stat]);
	return buf;
}

static char *
format_comm(struct kinfo_proc *kp)
{
	static char	buf[MAX_COLS];
	char		**p, **s;
	extern int	show_args;

	if (!show_args)
		return (kp->p_comm);

	s = get_proc_args(kp);
	if (s == NULL)
		return kp->p_comm;

	buf[0] = '\0';
	for (p = s; *p != NULL; p++) {
		if (p != s)
			strlcat(buf, " ", sizeof(buf));
		strlcat(buf, *p, sizeof(buf));
	}
	if (buf[0] == '\0')
		return (kp->p_comm);
	return (buf);
}

void
skip_processes(struct handle *hndl, int n)
{
	hndl->next_proc += n;
}

char *
format_next_process(struct handle *hndl, const char *(*get_userid)(uid_t, int),
    int rtable, pid_t *pid)
{
	struct kinfo_proc *pp;
	int cputime;
	double pct;
	char second_buf[16], eighth_buf[8];

	/* find and remember the next proc structure */
	pp = *(hndl->next_proc++);

	cputime = pp->p_rtime_sec + ((pp->p_rtime_usec + 500000) / 1000000);

	/* calculate the base for cpu percentages */
	pct = (double)pp->p_pctcpu / fscale;

	if (get_userid == NULL)
		snprintf(second_buf, sizeof(second_buf), "%8d", pp->p_tid);
	else
		strlcpy(second_buf, (*get_userid)(pp->p_ruid, 0),
		    sizeof(second_buf));

	if (rtable)
		snprintf(eighth_buf, sizeof(eighth_buf), "%7d", pp->p_rtableid);
	else
		strlcpy(eighth_buf, pp->p_wmesg[0] ? pp->p_wmesg : "-",
		    sizeof(eighth_buf));

	/* format this entry */
	snprintf(fmt, sizeof(fmt), Proc_format, pp->p_pid, second_buf,
	    pp->p_priority - PZERO, pp->p_nice - NZERO,
	    format_k(pagetok(PROCSIZE(pp))),
	    format_k(pagetok(pp->p_vm_rssize)),
	    (pp->p_stat == SSLEEP && pp->p_slptime > maxslp) ?
	    "idle" : state_abbr(pp),
	    eighth_buf, format_time(cputime), 100.0 * pct,
	    printable(format_comm(pp)));

	*pid = pp->p_pid;
	/* return the result */
	return (fmt);
}

/* comparison routine for qsort */
static unsigned char sorted_state[] =
{
	0,			/* not used		 */
	4,			/* start		 */
	5,			/* run			 */
	2,			/* sleep		 */
	3,			/* stop			 */
	1			/* zombie		 */
};

extern int rev_order;

/*
 *  proc_compares - comparison functions for "qsort"
 */

/*
 * First, the possible comparison keys.  These are defined in such a way
 * that they can be merely listed in the source code to define the actual
 * desired ordering.
 */

#define ORDERKEY_PCTCPU \
	if ((result = (int)(p2->p_pctcpu - p1->p_pctcpu)) == 0)
#define ORDERKEY_CPUTIME \
	if ((result = p2->p_rtime_sec - p1->p_rtime_sec) == 0) \
		if ((result = p2->p_rtime_usec - p1->p_rtime_usec) == 0)
#define ORDERKEY_STATE \
	if ((result = sorted_state[(unsigned char)p2->p_stat] - \
	    sorted_state[(unsigned char)p1->p_stat])  == 0)
#define ORDERKEY_PRIO \
	if ((result = p2->p_priority - p1->p_priority) == 0)
#define ORDERKEY_RSSIZE \
	if ((result = p2->p_vm_rssize - p1->p_vm_rssize) == 0)
#define ORDERKEY_MEM \
	if ((result = PROCSIZE(p2) - PROCSIZE(p1)) == 0)
#define ORDERKEY_PID \
	if ((result = p1->p_pid - p2->p_pid) == 0)
#define ORDERKEY_CMD \
	if ((result = strcmp(p1->p_comm, p2->p_comm)) == 0)

/* remove one level of indirection and set sort order */
#define SETORDER do { \
		if (rev_order) { \
			p1 = *(struct kinfo_proc **) v2; \
			p2 = *(struct kinfo_proc **) v1; \
		} else { \
			p1 = *(struct kinfo_proc **) v1; \
			p2 = *(struct kinfo_proc **) v2; \
		} \
	} while (0)

/* compare_cpu - the comparison function for sorting by cpu percentage */
static int
compare_cpu(const void *v1, const void *v2)
{
	struct kinfo_proc *p1, *p2;
	int result;

	SETORDER;

	ORDERKEY_PCTCPU
	ORDERKEY_CPUTIME
	ORDERKEY_STATE
	ORDERKEY_PRIO
	ORDERKEY_RSSIZE
	ORDERKEY_MEM
		;
	return (result);
}

/* compare_size - the comparison function for sorting by total memory usage */
static int
compare_size(const void *v1, const void *v2)
{
	struct kinfo_proc *p1, *p2;
	int result;

	SETORDER;

	ORDERKEY_MEM
	ORDERKEY_RSSIZE
	ORDERKEY_PCTCPU
	ORDERKEY_CPUTIME
	ORDERKEY_STATE
	ORDERKEY_PRIO
		;
	return (result);
}

/* compare_res - the comparison function for sorting by resident set size */
static int
compare_res(const void *v1, const void *v2)
{
	struct kinfo_proc *p1, *p2;
	int result;

	SETORDER;

	ORDERKEY_RSSIZE
	ORDERKEY_MEM
	ORDERKEY_PCTCPU
	ORDERKEY_CPUTIME
	ORDERKEY_STATE
	ORDERKEY_PRIO
		;
	return (result);
}

/* compare_time - the comparison function for sorting by CPU time */
static int
compare_time(const void *v1, const void *v2)
{
	struct kinfo_proc *p1, *p2;
	int result;

	SETORDER;

	ORDERKEY_CPUTIME
	ORDERKEY_PCTCPU
	ORDERKEY_STATE
	ORDERKEY_PRIO
	ORDERKEY_MEM
	ORDERKEY_RSSIZE
		;
	return (result);
}

/* compare_prio - the comparison function for sorting by CPU time */
static int
compare_prio(const void *v1, const void *v2)
{
	struct kinfo_proc *p1, *p2;
	int result;

	SETORDER;

	ORDERKEY_PRIO
	ORDERKEY_PCTCPU
	ORDERKEY_CPUTIME
	ORDERKEY_STATE
	ORDERKEY_RSSIZE
	ORDERKEY_MEM
		;
	return (result);
}

static int
compare_pid(const void *v1, const void *v2)
{
	struct kinfo_proc *p1, *p2;
	int result;

	SETORDER;

	ORDERKEY_PID
	ORDERKEY_PCTCPU
	ORDERKEY_CPUTIME
	ORDERKEY_STATE
	ORDERKEY_PRIO
	ORDERKEY_RSSIZE
	ORDERKEY_MEM
		;
	return (result);
}

static int
compare_cmd(const void *v1, const void *v2)
{
	struct kinfo_proc *p1, *p2;
	int result;

	SETORDER;

	ORDERKEY_CMD
	ORDERKEY_PCTCPU
	ORDERKEY_CPUTIME
	ORDERKEY_STATE
	ORDERKEY_PRIO
	ORDERKEY_RSSIZE
	ORDERKEY_MEM
		;
	return (result);
}


int (*proc_compares[])(const void *, const void *) = {
	compare_cpu,
	compare_size,
	compare_res,
	compare_time,
	compare_prio,
	compare_pid,
	compare_cmd,
	NULL
};

/*
 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
 *		the process does not exist.
 *		It is EXTREMELY IMPORTANT that this function work correctly.
 *		If top runs setuid root (as in SVR4), then this function
 *		is the only thing that stands in the way of a serious
 *		security problem.  It validates requests for the "kill"
 *		and "renice" commands.
 */
uid_t
proc_owner(pid_t pid)
{
	struct kinfo_proc **prefp, *pp;
	int cnt;

	prefp = pref;
	cnt = pref_len;
	while (--cnt >= 0) {
		pp = *prefp++;
		if (pp->p_pid == pid)
			return ((uid_t)pp->p_ruid);
	}
	return (uid_t)(-1);
}

/*
 * swapmode is rewritten by Tobias Weingartner <weingart@openbsd.org>
 * to be based on the new swapctl(2) system call.
 */
static int
swapmode(int *used, int *total)
{
	struct swapent *swdev;
	int nswap, rnswap, i;

	nswap = swapctl(SWAP_NSWAP, 0, 0);
	if (nswap == 0)
		return 0;

	swdev = calloc(nswap, sizeof(*swdev));
	if (swdev == NULL)
		return 0;

	rnswap = swapctl(SWAP_STATS, swdev, nswap);
	if (rnswap == -1) {
		free(swdev);
		return 0;
	}

	/* if rnswap != nswap, then what? */

	/* Total things up */
	*total = *used = 0;
	for (i = 0; i < nswap; i++) {
		if (swdev[i].se_flags & SWF_ENABLE) {
			*used += (swdev[i].se_inuse / (1024 / DEV_BSIZE));
			*total += (swdev[i].se_nblks / (1024 / DEV_BSIZE));
		}
	}
	free(swdev);
	return 1;
}