/* * This is an OpenSSL-compatible implementation of the RSA Data Security, Inc. * MD4 Message-Digest Algorithm (RFC 1320). * * Homepage: * http://openwall.info/wiki/people/solar/software/public-domain-source-code/md4 * * Author: * Alexander Peslyak, better known as Solar Designer * * This software was written by Alexander Peslyak in 2001. No copyright is * claimed, and the software is hereby placed in the public domain. * In case this attempt to disclaim copyright and place the software in the * public domain is deemed null and void, then the software is * Copyright (c) 2001 Alexander Peslyak and it is hereby released to the * general public under the following terms: * * Redistribution and use in source and binary forms, with or without * modification, are permitted. * * There's ABSOLUTELY NO WARRANTY, express or implied. * * (This is a heavily cut-down "BSD license".) * * This differs from Colin Plumb's older public domain implementation in that * no exactly 32-bit integer data type is required (any 32-bit or wider * unsigned integer data type will do), there's no compile-time endianness * configuration, and the function prototypes match OpenSSL's. No code from * Colin Plumb's implementation has been reused; this comment merely compares * the properties of the two independent implementations. * * The primary goals of this implementation are portability and ease of use. * It is meant to be fast, but not as fast as possible. Some known * optimizations are not included to reduce source code size and avoid * compile-time configuration. */ #include #include "md4.h" /* * The basic MD4 functions. * * F and G are optimized compared to their RFC 1320 definitions, with the * optimization for F borrowed from Colin Plumb's MD5 implementation. */ #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z)))) #define G(x, y, z) (((x) & ((y) | (z))) | ((y) & (z))) #define H(x, y, z) ((x) ^ (y) ^ (z)) /* * The MD4 transformation for all three rounds. */ #define STEP(f, a, b, c, d, x, s) \ (a) += f((b), (c), (d)) + (x); \ (a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s)))); /* * SET reads 4 input bytes in little-endian byte order and stores them in a * properly aligned word in host byte order. * * The check for little-endian architectures that tolerate unaligned memory * accesses is just an optimization. Nothing will break if it fails to detect * a suitable architecture. * * Unfortunately, this optimization may be a C strict aliasing rules violation * if the caller's data buffer has effective type that cannot be aliased by * MD4_u32plus. In practice, this problem may occur if these MD4 routines are * inlined into a calling function, or with future and dangerously advanced * link-time optimizations. For the time being, keeping these MD4 routines in * their own translation unit avoids the problem. */ #if defined(__i386__) || defined(__x86_64__) || defined(__vax__) #define SET(n) \ (*(MD4_u32plus *)&ptr[(n) * 4]) #define GET(n) \ SET(n) #else #define SET(n) \ (ctx->block[(n)] = \ (MD4_u32plus)ptr[(n) * 4] | \ ((MD4_u32plus)ptr[(n) * 4 + 1] << 8) | \ ((MD4_u32plus)ptr[(n) * 4 + 2] << 16) | \ ((MD4_u32plus)ptr[(n) * 4 + 3] << 24)) #define GET(n) \ (ctx->block[(n)]) #endif /* * This processes one or more 64-byte data blocks, but does NOT update the bit * counters. There are no alignment requirements. */ static const void *body(MD4_CTX *ctx, const void *data, unsigned long size) { const unsigned char *ptr; MD4_u32plus a, b, c, d; MD4_u32plus saved_a, saved_b, saved_c, saved_d; const MD4_u32plus ac1 = 0x5a827999, ac2 = 0x6ed9eba1; ptr = (const unsigned char *)data; a = ctx->a; b = ctx->b; c = ctx->c; d = ctx->d; do { saved_a = a; saved_b = b; saved_c = c; saved_d = d; /* Round 1 */ STEP(F, a, b, c, d, SET(0), 3) STEP(F, d, a, b, c, SET(1), 7) STEP(F, c, d, a, b, SET(2), 11) STEP(F, b, c, d, a, SET(3), 19) STEP(F, a, b, c, d, SET(4), 3) STEP(F, d, a, b, c, SET(5), 7) STEP(F, c, d, a, b, SET(6), 11) STEP(F, b, c, d, a, SET(7), 19) STEP(F, a, b, c, d, SET(8), 3) STEP(F, d, a, b, c, SET(9), 7) STEP(F, c, d, a, b, SET(10), 11) STEP(F, b, c, d, a, SET(11), 19) STEP(F, a, b, c, d, SET(12), 3) STEP(F, d, a, b, c, SET(13), 7) STEP(F, c, d, a, b, SET(14), 11) STEP(F, b, c, d, a, SET(15), 19) /* Round 2 */ STEP(G, a, b, c, d, GET(0) + ac1, 3) STEP(G, d, a, b, c, GET(4) + ac1, 5) STEP(G, c, d, a, b, GET(8) + ac1, 9) STEP(G, b, c, d, a, GET(12) + ac1, 13) STEP(G, a, b, c, d, GET(1) + ac1, 3) STEP(G, d, a, b, c, GET(5) + ac1, 5) STEP(G, c, d, a, b, GET(9) + ac1, 9) STEP(G, b, c, d, a, GET(13) + ac1, 13) STEP(G, a, b, c, d, GET(2) + ac1, 3) STEP(G, d, a, b, c, GET(6) + ac1, 5) STEP(G, c, d, a, b, GET(10) + ac1, 9) STEP(G, b, c, d, a, GET(14) + ac1, 13) STEP(G, a, b, c, d, GET(3) + ac1, 3) STEP(G, d, a, b, c, GET(7) + ac1, 5) STEP(G, c, d, a, b, GET(11) + ac1, 9) STEP(G, b, c, d, a, GET(15) + ac1, 13) /* Round 3 */ STEP(H, a, b, c, d, GET(0) + ac2, 3) STEP(H, d, a, b, c, GET(8) + ac2, 9) STEP(H, c, d, a, b, GET(4) + ac2, 11) STEP(H, b, c, d, a, GET(12) + ac2, 15) STEP(H, a, b, c, d, GET(2) + ac2, 3) STEP(H, d, a, b, c, GET(10) + ac2, 9) STEP(H, c, d, a, b, GET(6) + ac2, 11) STEP(H, b, c, d, a, GET(14) + ac2, 15) STEP(H, a, b, c, d, GET(1) + ac2, 3) STEP(H, d, a, b, c, GET(9) + ac2, 9) STEP(H, c, d, a, b, GET(5) + ac2, 11) STEP(H, b, c, d, a, GET(13) + ac2, 15) STEP(H, a, b, c, d, GET(3) + ac2, 3) STEP(H, d, a, b, c, GET(11) + ac2, 9) STEP(H, c, d, a, b, GET(7) + ac2, 11) STEP(H, b, c, d, a, GET(15) + ac2, 15) a += saved_a; b += saved_b; c += saved_c; d += saved_d; ptr += 64; } while (size -= 64); ctx->a = a; ctx->b = b; ctx->c = c; ctx->d = d; return ptr; } void MD4_Init(MD4_CTX *ctx) { ctx->a = 0x67452301; ctx->b = 0xefcdab89; ctx->c = 0x98badcfe; ctx->d = 0x10325476; ctx->lo = 0; ctx->hi = 0; } void MD4_Update(MD4_CTX *ctx, const void *data, unsigned long size) { MD4_u32plus saved_lo; unsigned long used, available; saved_lo = ctx->lo; if ((ctx->lo = (saved_lo + size) & 0x1fffffff) < saved_lo) ctx->hi++; ctx->hi += size >> 29; used = saved_lo & 0x3f; if (used) { available = 64 - used; if (size < available) { memcpy(&ctx->buffer[used], data, size); return; } memcpy(&ctx->buffer[used], data, available); data = (const unsigned char *)data + available; size -= available; body(ctx, ctx->buffer, 64); } if (size >= 64) { data = body(ctx, data, size & ~(unsigned long)0x3f); size &= 0x3f; } memcpy(ctx->buffer, data, size); } #define OUT(dst, src) \ (dst)[0] = (unsigned char)(src); \ (dst)[1] = (unsigned char)((src) >> 8); \ (dst)[2] = (unsigned char)((src) >> 16); \ (dst)[3] = (unsigned char)((src) >> 24); void MD4_Final(unsigned char *result, MD4_CTX *ctx) { unsigned long used, available; used = ctx->lo & 0x3f; ctx->buffer[used++] = 0x80; available = 64 - used; if (available < 8) { memset(&ctx->buffer[used], 0, available); body(ctx, ctx->buffer, 64); used = 0; available = 64; } memset(&ctx->buffer[used], 0, available - 8); ctx->lo <<= 3; OUT(&ctx->buffer[56], ctx->lo) OUT(&ctx->buffer[60], ctx->hi) body(ctx, ctx->buffer, 64); OUT(&result[0], ctx->a) OUT(&result[4], ctx->b) OUT(&result[8], ctx->c) OUT(&result[12], ctx->d) memset(ctx, 0, sizeof(*ctx)); }